A307381 Number of sextic primitive Dirichlet characters modulo n.
1, 0, 1, 1, 1, 0, 5, 2, 4, 0, 1, 1, 5, 0, 1, 0, 1, 0, 5, 1, 5, 0, 1, 2, 0, 0, 0, 5, 1, 0, 5, 0, 1, 0, 5, 4, 5, 0, 5, 2, 1, 0, 5, 1, 4, 0, 1, 0, 0, 0, 1, 5, 1, 0, 1, 10, 5, 0, 1, 1, 5, 0, 20, 0, 5, 0, 5, 1, 1, 0, 1, 8, 5, 0, 0, 5, 5, 0, 5, 0, 0, 0, 1, 5, 1, 0, 1
Offset: 1
Examples
Let w = exp(2*Pi/6) = (1 + sqrt(3)*i)/2. For n = 19, the 5 sextic primitive Dirichlet characters modulo n are: Chi_1 = [0, 1, w, w, w - 1, -w, w - 1, 1, -1, w - 1, -w + 1, 1, -1, -w + 1, w, -w + 1, -w, -w, -1]; Chi_2 = [0, 1, w - 1, w - 1, -w, w - 1, -w, 1, 1, -w, -w, 1, 1, -w, w - 1, -w, w - 1, w - 1, 1]; Chi_3 = [0, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1]; Chi_4 = [0, 1, -w, -w, w - 1, -w, w - 1, 1, 1, w - 1, w - 1, 1, 1, w - 1, -w, w - 1, -w, -w, 1]; Chi_5 = [0, 1, -w + 1, -w + 1, -w, w - 1, -w, 1, -1, -w, w, 1, -1, w, -w + 1, w, w - 1, w - 1, -1], so a(19) = 5.
Links
- Jianing Song, Table of n, a(n) for n = 1..65539
Crossrefs
Programs
-
Mathematica
f[2, e_] := Which[e == 1, 0, e == 2, 1, e == 3, 2, e >= 4, 0]; f[3, e_] := Which[e == 1, 1, e == 2, 4, e >= 3, 0]; f[p_, 1] := If[Mod[p, 6] == 1, 5, 1]; f[p_, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
PARI
a(n)={ my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2, if(e==3, r*=2, if(e!=2, r=0; return(r)))); if(p==3, if(e==2, r*=4, if(e!=1, r=0; return(r)))); if(p>3, if(p%6==1&&e==1, r*=5, if(e!=1, r=0; return(r)))); ); return(r); } \\ Jianing Song, Nov 10 2019
Formula
Multiplicative with a(4) = 1, a(8) = 2, a(2^e) = 0 for e = 1 or e >= 4; a(3) = 1, a(9) = 4, a(3^e) = 0 for e >= 3; a(p) = 5 if p == 1 (mod 6) and 1 if p == 5 (mod 6), a(p^e) = 0 if p > 3 and e >= 2.
Comments