cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307386 Heinz numbers of integer partitions with Durfee square of length 3.

This page as a plain text file.
%I A307386 #6 Apr 07 2019 00:03:12
%S A307386 125,175,245,250,275,325,343,350,375,385,425,455,475,490,500,525,539,
%T A307386 550,575,595,605,625,637,650,665,686,700,715,725,735,750,770,775,805,
%U A307386 825,833,845,847,850,875,910,925,931,935,950,975,980,1000,1001,1015,1025
%N A307386 Heinz numbers of integer partitions with Durfee square of length 3.
%C A307386 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A307386 The Durfee square of an integer partition is the largest square contained in its Young diagram.
%H A307386 Gus Wiseman, <a href="/A307386/a307386.png">Young diagrams corresponding to the first 36 terms</a>.
%e A307386 The sequence of terms together with their prime indices begins:
%e A307386   125: {3,3,3}
%e A307386   175: {3,3,4}
%e A307386   245: {3,4,4}
%e A307386   250: {1,3,3,3}
%e A307386   275: {3,3,5}
%e A307386   325: {3,3,6}
%e A307386   343: {4,4,4}
%e A307386   350: {1,3,3,4}
%e A307386   375: {2,3,3,3}
%e A307386   385: {3,4,5}
%e A307386   425: {3,3,7}
%e A307386   455: {3,4,6}
%e A307386   475: {3,3,8}
%e A307386   490: {1,3,4,4}
%e A307386   500: {1,1,3,3,3}
%e A307386   525: {2,3,3,4}
%e A307386   539: {4,4,5}
%e A307386   550: {1,3,3,5}
%e A307386   575: {3,3,9}
%e A307386   595: {3,4,7}
%t A307386 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
%t A307386 Select[Range[100],durf[#]==3&]
%Y A307386 Positions of 3 in A257990. The Durfee length 1 case is A093641. The Durfee length 2 case is A325164. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485.
%Y A307386 Cf. A056239, A112798, A115994, A252464, A325163, A325170.
%K A307386 nonn
%O A307386 1,1
%A A307386 _Gus Wiseman_, Apr 06 2019