This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307386 #6 Apr 07 2019 00:03:12 %S A307386 125,175,245,250,275,325,343,350,375,385,425,455,475,490,500,525,539, %T A307386 550,575,595,605,625,637,650,665,686,700,715,725,735,750,770,775,805, %U A307386 825,833,845,847,850,875,910,925,931,935,950,975,980,1000,1001,1015,1025 %N A307386 Heinz numbers of integer partitions with Durfee square of length 3. %C A307386 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A307386 The Durfee square of an integer partition is the largest square contained in its Young diagram. %H A307386 Gus Wiseman, <a href="/A307386/a307386.png">Young diagrams corresponding to the first 36 terms</a>. %e A307386 The sequence of terms together with their prime indices begins: %e A307386 125: {3,3,3} %e A307386 175: {3,3,4} %e A307386 245: {3,4,4} %e A307386 250: {1,3,3,3} %e A307386 275: {3,3,5} %e A307386 325: {3,3,6} %e A307386 343: {4,4,4} %e A307386 350: {1,3,3,4} %e A307386 375: {2,3,3,3} %e A307386 385: {3,4,5} %e A307386 425: {3,3,7} %e A307386 455: {3,4,6} %e A307386 475: {3,3,8} %e A307386 490: {1,3,4,4} %e A307386 500: {1,1,3,3,3} %e A307386 525: {2,3,3,4} %e A307386 539: {4,4,5} %e A307386 550: {1,3,3,5} %e A307386 575: {3,3,9} %e A307386 595: {3,4,7} %t A307386 durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; %t A307386 Select[Range[100],durf[#]==3&] %Y A307386 Positions of 3 in A257990. The Durfee length 1 case is A093641. The Durfee length 2 case is A325164. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485. %Y A307386 Cf. A056239, A112798, A115994, A252464, A325163, A325170. %K A307386 nonn %O A307386 1,1 %A A307386 _Gus Wiseman_, Apr 06 2019