cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307389 a(n) is the number of elements in the species of orbit polytopes in dimension n.

This page as a plain text file.
%I A307389 #42 Dec 01 2024 20:40:31
%S A307389 1,1,2,7,29,136,737,4537,30914,229831,1850717,16036912,148573889,
%T A307389 1463520241,15259826402,167789512807,1939125333629,23484982837816,
%U A307389 297289975208417,3924325664733097,53906145745657634,769095929901073831,11377500925452103037,174244037885068510432
%N A307389 a(n) is the number of elements in the species of orbit polytopes in dimension n.
%C A307389 An orbit polytope is a polytope whose vertices are all of the permutations of the coordinates of some point in R^n. Two polytopes are normally equivalent if they have the same normal fan. The species of orbit polytopes maps a finite set I to the set OP[I] of normal equivalence classes of finite products of orbit polytopes in RI. For each n, this sequence counts the size of OP[I] when |I|=n.
%H A307389 Jinyuan Wang, <a href="/A307389/b307389.txt">Table of n, a(n) for n = 0..517</a>
%H A307389 Mariel Supina, <a href="https://arxiv.org/abs/1904.08437">The Hopf Monoid of Orbit Polytopes</a>, arXiv:1904.08437 [math.CO], 2019.
%F A307389 E.g.f.: exp((exp(2*t) - 2*exp(t) + 2*t + 1)/2). This is because OP is the exponential of the species of compositions mapping a finite set I to the set of compositions of the integer |I|, excluding compositions with one part if |I|>1.
%F A307389 a(n) = R(n, 0) for n >= 0 where R(n, q) = (q+1)*R(n-1, q) - R(n-1, q+1) + R(n-1, q+2) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - _Mikhail Kurkov_, Jan 04 2024 [verification needed]
%e A307389 For n=3, there are 7 normal equivalence classes. Among these are the 4 normal equivalence classes of orbit polytopes in R^3: the permutohedron conv{123,132,213,231,321,312}, the standard simplex conv{100,010,001}, the simplex conv{110,101,011}, and a point. In addition, there are 3 normal equivalence classes of products of two orbit polytopes, which are the line segments conv{001,010}, conv{001,100}, and conv{010,100}.
%p A307389 b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
%p A307389       b(n-j, 0)*binomial(n-1, j-1)/p!, j=2..n)+b(n-1, p+1)*n)
%p A307389     end:
%p A307389 a:= n-> b(n, 0):
%p A307389 seq(a(n), n=0..23);  # _Alois P. Heinz_, Dec 01 2024
%t A307389 nmax = 30; CoefficientList[Series[E^((E^(2*x) - 2*E^x + 2*x + 1)/2), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, May 18 2019 *)
%o A307389 (PARI) my(t='t+O('t^30)); Vec(serlaplace(exp((exp(2*t)-2*exp(t)+2*t+1 )/2))) \\ _Michel Marcus_, Apr 24 2019
%o A307389 (PARI) upto(n) = my(v1, v2, v3); v1 = vector(2*n + 1, i, 1); v2 = v1; v3 = vector(n + 1, i, 0); v3[1] = 1; for(i = 1, n, for(q = 0, 2*(n - i), v2[q + 1] = (q + 1) * v1[q + 1] - v1[q + 2] + v1[q + 3]); v1 = v2; v3[i + 1] = v1[1]); v3 \\ _Mikhail Kurkov_, Jan 04 2024 [verification needed]
%o A307389 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp((Exp(2*x) -2*Exp(x) +2*x +1)/2) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 14 2019
%o A307389 (Sage) m = 30; T = taylor(exp((exp(2*x) -2*exp(x) +2*x +1)/2), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, Jul 14 2019
%Y A307389 Cf. A376544.
%K A307389 nonn
%O A307389 0,3
%A A307389 _Mariel Supina_, Apr 17 2019
%E A307389 More terms from _Michel Marcus_, Apr 26 2019