A307417 Numbers that can be expressed in a base in such a way that the sum of cubes of their digits in this base equals the original number.
8, 9, 16, 17, 27, 28, 29, 35, 43, 54, 55, 62, 64, 65, 72, 91, 92, 99, 118, 125, 126, 127, 128, 133, 134, 152, 153, 189, 190, 216, 217, 224, 243, 244, 250, 251, 280, 307, 341, 342, 343, 344, 351, 370, 371, 407, 432, 433, 468, 469, 512, 513, 514, 520, 539, 559
Offset: 1
Examples
a(1) = 8 = [2, 0] (base 4) = 2^3 + 0^3 a(2) = 9 = [2, 1] (base 4) = 2^3 + 1^3 a(3) = 16 = [2, 2] (base 7) = 2^3 + 2^3 a(4) = 17 = [1, 2, 2] (base 3) = 1^3 + 2^3 + 2^3
Links
- César Eliud Lozada, Table of n, a(n) for n = 1..114
- Allan Wm. Johnson Jr., Crux Mathematicorum, Vol. 5, No. 1, January 1979, problem 407, 16.
- Allan Wm. Johnson Jr., Crux Mathematicorum, Vol. 5, No. 9, November 1979, solution to problem 407, 273-277.
Programs
-
Maple
sqn:= []; lis:=[]; for n to 1000 do b := 2; while b < n do #needs to be adjusted q := convert(n, base, b); s := convert(map(proc (X) options operator, arrow; X^3 end proc, q), `+`); if evalb(s = n) then sqn := [op(sqn), n]; lis := [op(lis), [n, b, ListTools[Reverse](q)]]; break end if; b := b+1 end do end do; lis := lis; #list of decompositions [number, base, conversion] sqn := sqn; #sequence
Comments