cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307418 Expansion of 1/(1 - x - 2*x/(1 - 3*x - 4*x/(1 - 5*x - 6*x/(1 - 7*x - 8*x/(1 - ...))))), a continued fraction.

This page as a plain text file.
%I A307418 #23 Mar 18 2024 06:41:58
%S A307418 1,3,23,297,5377,125211,3564311,119923089,4655903809,204870639987,
%T A307418 10075617486167,547693463064633,32607543239954113,2110160087505699339,
%U A307418 147482363058886213079,11071382656533287144481,888443133459417946162561,75894715974405095400952803
%N A307418 Expansion of 1/(1 - x - 2*x/(1 - 3*x - 4*x/(1 - 5*x - 6*x/(1 - 7*x - 8*x/(1 - ...))))), a continued fraction.
%F A307418 a(n) ~ c * d^n * n^n, where d = 2 / (exp(1) * (2*log(2) - 1)) = 1.9046586137314438905888971496696905186344... and c = 1/sqrt(2*log(2) - 1) = 1.608943581845581629220091... - _Vaclav Kotesovec_, Jul 01 2019, updated Mar 18 2024
%t A307418 nmax = 17; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2 k x, 1 - (2 k + 1) x, {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A307418 Cf. A001147, A001813, A292855.
%K A307418 nonn
%O A307418 0,2
%A A307418 _Ilya Gutkovskiy_, Jun 25 2019