This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307419 #46 Dec 05 2024 19:16:15 %S A307419 1,0,1,0,3,1,0,11,9,1,0,50,71,18,1,0,274,580,245,30,1,0,1764,5104, %T A307419 3135,625,45,1,0,13068,48860,40369,11515,1330,63,1,0,109584,509004, %U A307419 537628,203889,33320,2506,84,1,0,1026576,5753736,7494416,3602088,775929,81900,4326,108,1 %N A307419 Triangle of harmonic numbers T(n, k) = [t^n] Gamma(n+k+t)/Gamma(k+t) for n >= 0 and 0 <= k <= n, read by rows. %F A307419 E.g.f.: A(t,x) = (1-t)^(-x/(1-t)). %F A307419 T(n, k) = n!*Sum_{L1+L2+...+Lk=n} H(L1)H(L2)...H(Lk) with Li > 0, where H(n) are the harmonic numbers A001008. %F A307419 T(n, k) = n!*Sum_{i=0..n-k} abs(Stirling1(n-i, k))/(n-i)!*binomial(i+k-1, i). %F A307419 T(n, k) = k! [x^k] (d^n/dx^n) ((log(1-x)/(x-1))^n/n!), the e.g.f. for column k where Col(k) = [T(n+k, k) for n = 0, 1, 2, ...]. - _Peter Luschny_, Apr 12 2019 %F A307419 T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(j, k)*Stirling1(n, j)*k^(j-k). - _Peter Luschny_, Jun 09 2022 %e A307419 Triangle starts: %e A307419 0: [1] %e A307419 1: [0, 1] %e A307419 2: [0, 3, 1] %e A307419 3: [0, 11, 9, 1] %e A307419 4: [0, 50, 71, 18, 1] %e A307419 5: [0, 274, 580, 245, 30, 1] %e A307419 6: [0, 1764, 5104, 3135, 625, 45, 1] %e A307419 7: [0, 13068, 48860, 40369, 11515, 1330, 63, 1] %e A307419 8: [0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1] %e A307419 9: [0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1] %e A307419 Col: A000254, A001706, A001713, A001719, ... %p A307419 # Note that for n > 16 Maple fails (at least in some versions) to compute the %p A307419 # terms properly. Inserting 'simplify' or numerical evaluation might help. %p A307419 A307419Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+x)/GAMMA(k+x); %p A307419 ser := (n, k) -> series(ogf(n,k),x,k+2); seq(coeff(ser(n,k),x,k),k=0..n) end: seq(A307419Row(n), n=0..9); %p A307419 # Alternatively by the egf for column k: %p A307419 A307419Col := proc(n, len) local f, egf, ser; f := (n,x) -> (log(1-x)/(x-1))^n/n!; %p A307419 egf := (n,x) -> diff(f(n, x), [x$n]); ser := n -> series(egf(n, x), x, len); %p A307419 seq(k!*coeff(ser(n), x, k), k=0..len-1) end: %p A307419 seq(print(A307419Col(k, 10)), k=0..9); # _Peter Luschny_, Apr 12 2019 %p A307419 T := (n, k) -> add((-1)^(n-j)*binomial(j, k)*Stirling1(n, j)*k^(j-k), j = k..n): %p A307419 seq(seq(T(n,k), k = 0..n), n = 0..9); # _Peter Luschny_, Jun 09 2022 %t A307419 f[n_, x_] := f[n, x] = D[(Log[1 - x]/(x - 1))^n/n!, {x, n}]; %t A307419 T[n_, k_] := (n - k)! SeriesCoefficient[f[k, x], {x, 0, n - k}]; %t A307419 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 13 2019 *) %o A307419 (Maxima) T(n,k):=n!*sum((binomial(k+i-1,i)*abs(stirling1(n-i,k)))/(n-i)!,i,0,n-k); %o A307419 (Maxima) taylor((1-t)^(-x/(1-t)),t,0,7,x,0,7); %o A307419 (Maxima) T(n,k):=coeff(taylor(gamma(n+k+t)/gamma(k+t),t,0,10),t,k); %o A307419 (PARI) T(n, k) = n!*sum(i=0, n-k, abs(stirling(n-i, k, 1))*binomial(i+k-1, i)/(n-i)!); \\ _Michel Marcus_, Apr 13 2019 %Y A307419 Row sums are A087761. %Y A307419 Columns are A000007, A000254, A001706, A001713, A001719. %Y A307419 Cf. A001008/A002805. %K A307419 nonn,tabl %O A307419 0,5 %A A307419 _Vladimir Kruchinin_, Apr 08 2019