This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307427 #18 Feb 16 2025 08:33:55 %S A307427 1,-1,-1,-1,-1,1,-1,2,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-2,-1,1,2, %T A307427 1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-2,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-2,1, %U A307427 -2,1,1,-1,-1,-1,1,1,2,1,-1,-1,1,1,-1,-1,-2,-1,1 %N A307427 Dirichlet g.f.: zeta(3*s) / (zeta(s) * zeta(2*s)). %C A307427 Dirichlet convolution of A210826 and A271102. %C A307427 Dirichlet convolution of A307424 and A008683. %H A307427 Vaclav Kotesovec, <a href="/A307427/b307427.txt">Table of n, a(n) for n = 1..10000</a> %H A307427 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletGeneratingFunction.html">Dirichlet Generating Function</a>. %H A307427 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_series">Dirichlet series</a>. %F A307427 Multiplicative with a(p^e) = 2 if e == 0 (mod 3), and -1 otherwise. - _Amiram Eldar_, Dec 25 2022 %t A307427 nmax = 100; A271102 = Table[DivisorSum[n, Abs[MoebiusMu[#]] * MoebiusMu[n/#] &], {n, 1, nmax}]; Table[DivisorSum[n, Mod[DivisorSigma[0, n/#], 3, -1] * A271102[[#]] &], {n, 1, nmax}] %t A307427 nmax = 100; A307424 = Table[DivisorSum[n, Abs[MoebiusMu[#]] * Mod[DivisorSigma[0, n/#], 3, -1]&], {n, 1, nmax}]; Table[DivisorSum[n, MoebiusMu[#] * A307424[[n/#]] &], {n, 1, nmax}] %t A307427 f[p_, e_] := If[Divisible[e, 3], 2, -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 25 2022 *) %o A307427 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X)*(1-X^2)/(1-X^3))[n], ", ")) \\ _Vaclav Kotesovec_, Jun 14 2020 %Y A307427 Cf. A008683, A010057, A210826, A271102, A307424. %K A307427 sign,mult %O A307427 1,8 %A A307427 _Vaclav Kotesovec_, Apr 08 2019