This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307431 #21 Apr 08 2019 17:29:08 %S A307431 1,0,1,0,1,1,0,1,0,2,0,1,1,2,1,0,1,0,4,0,2,0,1,1,5,0,2,2,0,1,0,7,0,2, %T A307431 0,5,0,1,1,8,1,2,2,6,1,0,1,0,11,0,4,0,12,0,2,0,1,1,12,0,5,4,15,0,2,2, %U A307431 0,1,0,15,0,5,0,28,0,2,0,5,0,1,1,17,1,5,5,35,0,2,2,6,2 %N A307431 Number T(n,k) of partitions of n into parts whose bitwise OR equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A307431 Alois P. Heinz, <a href="/A307431/b307431.txt">Rows n = 0..200, flattened</a> %H A307431 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %H A307431 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %e A307431 T(6,1) = 1: 111111. %e A307431 T(6,2) = 1: 222. %e A307431 T(6,3) = 5: 11112, 1122, 1113, 123, 33. %e A307431 T(6,5) = 2: 114, 15. %e A307431 T(6,6) = 2: 24, 6. %e A307431 Triangle T(n,k) begins: %e A307431 1; %e A307431 0, 1; %e A307431 0, 1, 1; %e A307431 0, 1, 0, 2; %e A307431 0, 1, 1, 2, 1; %e A307431 0, 1, 0, 4, 0, 2; %e A307431 0, 1, 1, 5, 0, 2, 2; %e A307431 0, 1, 0, 7, 0, 2, 0, 5; %e A307431 0, 1, 1, 8, 1, 2, 2, 6, 1; %e A307431 0, 1, 0, 11, 0, 4, 0, 12, 0, 2; %e A307431 0, 1, 1, 12, 0, 5, 4, 15, 0, 2, 2; %e A307431 ... %p A307431 b:= proc(n, i, k) option remember; `if`(n=0, x^k, `if`(i<1, 0, %p A307431 b(n, i-1, k)+b(n-i, min(n-i, i), Bits[Or](i, k)))) %p A307431 end: %p A307431 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): %p A307431 seq(T(n), n=0..14); %Y A307431 Columns k=0-1 give: A000007, A057427. %Y A307431 Row sums give: A000041. %Y A307431 Main diagonal gives A050315. %Y A307431 Cf. A050314 (the same for XOR), A307432 (the same for AND). %K A307431 nonn,tabl,look,base %O A307431 0,10 %A A307431 _Alois P. Heinz_, Apr 08 2019