cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307433 A special version of Pascal's triangle where only powers of 2 are permitted.

This page as a plain text file.
%I A307433 #90 Jul 19 2019 08:48:33
%S A307433 1,1,1,1,2,1,1,1,1,1,1,2,2,2,1,1,1,4,4,1,1,1,2,1,8,1,2,1,1,1,1,1,1,1,
%T A307433 1,1,1,2,2,2,2,2,2,2,1,1,1,4,4,4,4,4,4,1,1,1,2,1,8,8,8,8,8,1,2,1,1,1,
%U A307433 1,1,16,16,16,16,1,1,1,1,1,2,2,2,1,32,32,32,1,2,2,2,1
%N A307433 A special version of Pascal's triangle where only powers of 2 are permitted.
%C A307433 If the sum of the two numbers above in the triangular array is not a power of 2 (A000079), then a 1 is put in its place.
%C A307433 The ones in the table form a Sierpinski gasket (A047999).
%C A307433 Apparently, for any k > 0, the value 2^k first occurs on row A206332(k).
%C A307433 From _Bernard Schott_, May 05 2019: (Start)
%C A307433 For any m, at row 2^m - 1, there is only a string of 2^m times the number 1, then at row 2^(m+1) - 2, comes out for the first time and only once, the power of 2 equals to 2^(2^m-1). At row 2^(m+1) - 1, there are again 2^(m+1) times the number 1. This cycle can go on. Under, a part of this triangle between row 2^3 -1 and 2^4 - 2 that visualizes the explanations.
%C A307433                  1   1   1   1   1   1   1   1
%C A307433                    2   2   2   2   2   2   2
%C A307433                      4   4   4   4   4   4
%C A307433                        8   8   8   8   8
%C A307433                          16  16  16  16
%C A307433                            32  32  32
%C A307433                              64  64
%C A307433                                128
%C A307433   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 (End)
%H A307433 Rémy Sigrist, <a href="/A307433/b307433.txt">Table of n, a(n) for n = 0..8255</a> (rows n = 0..127)
%H A307433 Rémy Sigrist, <a href="/A307433/a307433.png">Colored representation of the first 1024 rows</a> (where the hue is function of log(T(n,k)))
%H A307433 Rémy Sigrist, <a href="/A307433/a307433_1.png">Colored representation of the first 1024 rows</a> (where black pixels correspond to ones)
%e A307433 The triangle begins:
%e A307433                                 1
%e A307433                               1   1
%e A307433                             1   2   1
%e A307433                           1   1   1   1
%e A307433                         1   2   2   2   1
%e A307433                       1   1   4   4   1   1
%e A307433                     1   2   1   8   1   2   1
%e A307433                   1   1   1   1   1   1   1   1
%e A307433                 1   2   2   2   2   2   2   2   1
%e A307433               1   1   4   4   4   4   4   4   1   1
%e A307433             1   2   1   8   8   8   8   8   1   2   1
%e A307433           1   1   1   1  16  16  16  16   1   1   1   1
%e A307433         1   2   2   2   1  32  32  32   1   2   2   2   1
%e A307433       1   1   4   4   1   1  64  64   1   1   4   4   1   1
%e A307433     1   2   1   8   1   2   1  128  1   2   1   8   1   2   1
%e A307433   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
%o A307433 (PARI) for (r=1, 13, apply(v -> print1 (v", "), row=vector(r, k, if (k==1 || k==r, 1, hammingweight(s=row[k-1]+row[k])==1, s, 1))))
%Y A307433 Cf. A000079, A007318, A047999, A206332, A307116 (analog with Fibonacci numbers).
%K A307433 nonn,tabl,look
%O A307433 0,5
%A A307433 _Rémy Sigrist_, May 05 2019