A307436 a(n) is the smallest k such that (Z/kZ)* contains C_(2n) X C_(2n) as a subgroup, where (Z/kZ)* is the multiplicative group of integers modulo n.
8, 65, 63, 544, 275, 455, 1247, 1088, 513, 1025, 1541, 7081, 4187, 3277, 1891, 12416, 14111, 2701, 43739, 7667, 2107, 10235, 6533, 11543, 12625, 8321, 8829, 31753, 13747, 8723, 116003, 49408, 10787, 39593, 14981, 23579, 33227, 104653, 12403, 45067, 61337
Offset: 1
Keywords
Examples
(Z/8Z)* = C_2 X C_2, in which {3^e mod 8} = {3, 1} and {3^e mod 8} = {5, 1}; (Z/65Z)* = C_4 X C_12, in which {8^e mod 65} = {8, 64, 57, 1} and {12^e mod 65} = {12, 14, 38, 1}; (Z/63Z)* = C_6 X C_6, in which {2^e mod 63} = {2. 4. 8, 16, 32, 1} and {5^e mod 63} = {5, 25, 62, 58, 38, 1}; (Z/544Z)* = C_2 X C_8 X C_16, in which {9^e mod 544} = {9, 81, 185, 33, 297, 497, 121, 1} and {13^e mod 544} = {13, 169, 21, 273, 285, 441, 293, 1}; (Z/275Z)* = C_10 X C_20, in which {4^e mod 275} = {4, 16, 64, 256, 199, 246, 159, 86, 69, 1} and {6^e mod 275} = {6, 36, 216, 196, 76, 181, 261, 191, 46, 1}; (Z/455Z)* = C_2 X C_12 X C_12, in which {2^e mod 455} = {2, 4, 8, 16, 32, 64, 128, 256, 57, 114, 228, 1} and {3^e mod 455} = {3, 9, 27, 81, 243, 274, 367, 191, 118, 354, 152, 1}.
Links
- Jianing Song, Table of n, a(n) for n = 1..200
- Wikipedia, Multiplicative group of integers modulo n
Crossrefs
Cf. A307437.
Programs
-
PARI
a(n) = my(d=1, v=znstar(d)[2]); while(sum(i=1, #v, !(v[i]%(2*n)))<2, d++; v=znstar(d)[2]); d
Comments