A307437 a(n) is the smallest k such that 2n divides psi(k), psi = A002322.
3, 5, 7, 17, 11, 13, 29, 17, 19, 25, 23, 73, 53, 29, 31, 97, 103, 37, 191, 41, 43, 89, 47, 97, 101, 53, 81, 113, 59, 61, 311, 193, 67, 137, 71, 73, 149, 229, 79, 187, 83, 203, 173, 89, 181, 235, 283, 97, 197, 101, 103, 313, 107, 109, 121, 113, 229, 233, 709, 241
Offset: 1
Examples
For n = 7, psi(29) = 28 and 29 is the smallest k such that 14 divides psi(k), so a(7) = 29. For n = 27, psi(81) = 54 and 81 is the smallest k such that 54 divides psi(k), so a(27) = 81. For n = 40, psi(187) = 80 and 187 is the smallest k such that 80 divides psi(k), so a(40) = 187. For n = 42, psi(203) = 84 and 203 is the smallest k such that 84 divides psi(k), so a(42) = 203.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Multiplicative group of integers modulo n
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N): count:= 0: for k from 3 while count < N do S:= select(t -> t <= N and V[t]=0, numtheory:-divisors(numtheory:-lambda(k)/2)); if nops(S) > 0 then count:= count + nops(S); V[convert(S,list)]:= k fi od: convert(V,list); # Robert Israel, Jul 10 2019
-
PARI
a(n) = my(i=1); while(A002322(i)%(2*n), i++); i \\ See A002322 for its program
-
Python
from sympy import reduced_totient def A307437(n): k = 1 while reduced_totient(k) % (2*n): k += 1 return k # Chai Wah Wu, Feb 24 2021
Formula
From Jianing Song, Feb 26 2021: (Start)
For odd prime p, a((p-1)/2*p^e) = p^(e+1) if (p-1)*p^e+1 is composite, (p-1)*p^e+1 otherwise. Proof: suppose a((p-1)/2*p^e) = p^a*r < p^(e+1), p does not divide r, then (p-1)*p^e | lcm((p-1)*p^(a-1), psi(r)) => p^e | lcm(p^(a-1), psi(r)).
If p^e | p^(a-1), then a((p-1)/2*p^e) >= p^a >= p^(e+1).
If p^e does not divide p^(a-1), then p^e | psi(r). r must have a prime factor of the form q = 2*t*p^e+1. If a >= 1, then a((p-1)/2*p^e) >= p*(2*p^e+1) > p^(e+1). So we must have a = 0. Write r = r'*q^b, then p-1 | lcm(psi(r'), 2*t*p^e*q^(b-1)) => p-1 | lcm(psi(r'), 2*t), hence 2*t*r' >= 2*t*psi(r') >= lcm(psi(r'), 2*t) => p-1. If 2*t*r' > p-1, then a((p-1)/2*p^e) >= r'*q = r'*(2*t*p^e+1) > p^(e+1). If 2*t*r' = p-1, then r' = psi(r') => r' = 1, 2*t = p-1, hence (p-1)*p^e+1 is prime. (End)
Comments