This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307441 #10 Apr 10 2019 06:15:58 %S A307441 1,2,7,35,216,1527,11927,101056,920055,8960343,93202418,1035640333, %T A307441 12305625141,156513872514,2131781868823,31077520424879, %U A307441 484157377851360,8040920113043655,141937291242762263,2654252437895865112,52412046969340405371,1089506079309378596823 %N A307441 G.f. A(x) satisfies: A(x) = Sum_{k>=0} k!*x^k*A(x)^k/(1 - x)^(k+1). %H A307441 Vaclav Kotesovec, <a href="/A307441/b307441.txt">Table of n, a(n) for n = 0..200</a> %F A307441 G.f. A(x) satisfies: A(x) = Sum_{j>=0} x^j * Sum_{k=0..j} k!*binomial(j,k)*A(x)^k. %F A307441 a(n) ~ exp(3) * n!. - _Vaclav Kotesovec_, Apr 10 2019 %e A307441 G.f.: A(x) = 1 + 2*x + 7*x^2 + 35*x^3 + 216*x^4 + 1527*x^5 + 11927*x^6 + 101056*x^7 + 920055*x^8 + 8960343*x^9 + 93202418*x^10 + ... %t A307441 terms = 22; A[_] = 1; Do[A[x_] = Sum[k! x^k A[x]^k/(1 - x)^(k + 1), {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] %t A307441 terms = 22; A[_] = 1; Do[A[x_] = Sum[x^j Sum[k! Binomial[j, k] A[x]^k, {k, 0, j}], {j, 0, i}] + O[x]^i, {i, 1, terms}]; CoefficientList[A[x], x] %Y A307441 Cf. A000522, A088368, A307442, A307443, A307444. %K A307441 nonn %O A307441 0,2 %A A307441 _Ilya Gutkovskiy_, Apr 08 2019