A309501 a(n) is the minimal number of steps to return to the origin for a self-avoiding walk with step-length n confined to one quadrant of a 2D plane where at each step the walk must go to an unvisited point with integer coordinates as close as possible to the origin.
4, 4, 4, 4, 20, 4, 4, 4, 4, 20, 4, 4, 6, 4, 20, 4, 120, 4, 4, 20, 4, 4, 4, 4, 6, 6, 4, 4, 32, 20, 4, 4, 4, 120, 20, 4, 6, 4, 6, 20, 6, 4, 4, 4, 20, 4, 4, 4, 4, 6, 120, 6, 2452, 4, 20, 4, 4, 32, 4, 20, 6, 4, 4, 4, 62, 4, 4, 120, 4, 20, 4, 4, 222, 6, 6
Offset: 1
Examples
a(1) = 4. Path: (0,0)->(0,1)->(1,1)->(1,0)->(0,0). a(5) = 20. Path: (0,0)->(0,5)->(3,1)->(3,6)->(0,2)->(5,2)->(1,5)->(1,0)->(4,4)->(0,1)->(5,1)->(1,4)->(4,0)->(0,3)->(5,3)->(1,6)->(1,1)->(6,1)->(2,4)->(5,0)->(0,0). a(13) = 6. Path: (0,0)->(12,5)->(0,10)->(13,10)->(1,5)->(13,0)->(0,0).
Links
- Scott R. Shannon, Table of n, a(n) for n = 1..336
- Wikipedia, Pythagorean Triples.
Comments