cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307449 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of five indeterminates in terms of their elementary symmetric functions (reverse Abramowitz-Stegun order of partitions).

Table of values

n a(n)
1 1
2 1
3 -2
4 1
5 -3
6 3
7 1
8 -4
9 2
10 4
11 -4
12 1
13 -5
14 5
15 5
16 -5
17 -5
18 5
19 1
20 -6
21 9
22 6
23 -2
24 -12
25 -6
26 3
27 6
28 6
29 1
30 -7
31 14
32 7
33 -7
34 -21
35 -7
36 7
37 7
38 14
39 7
40 -7
41 -7
42 1
43 -8
44 20
45 8
46 -16
47 -32
48 -8
49 2
50 24
51 12
52 24
53 8
54 -8
55 -8
56 -16
57 -16
58 4
59 8
60 1
61 -9
62 27
63 9
64 -30
65 -45
66 -9
67 9
68 54
69 18
70 36
71 9
72 -9
73 -27
74 -27
75 -27
76 -27
77 3
78 18
79 9
80 9
81 18
82 -9
83 1
84 -10
85 35
86 10
87 -50
88 -60
89 -10
90 25
91 100
92 25
93 50
94 10
95 -2
96 -40
97 -60
98 -60
99 -40
100 -40
101 15
102 10
103 10
104 60
105 30
106 15
107 30
108 -10
109 -10
110 -20
111 -20
112 5

List of values

[1, 1, -2, 1, -3, 3, 1, -4, 2, 4, -4, 1, -5, 5, 5, -5, -5, 5, 1, -6, 9, 6, -2, -12, -6, 3, 6, 6, 1, -7, 14, 7, -7, -21, -7, 7, 7, 14, 7, -7, -7, 1, -8, 20, 8, -16, -32, -8, 2, 24, 12, 24, 8, -8, -8, -16, -16, 4, 8, 1, -9, 27, 9, -30, -45, -9, 9, 54, 18, 36, 9, -9, -27, -27, -27, -27, 3, 18, 9, 9, 18, -9, 1, -10, 35, 10, -50, -60, -10, 25, 100, 25, 50, 10, -2, -40, -60, -60, -40, -40, 15, 10, 10, 60, 30, 15, 30, -10, -10, -20, -20, 5]