This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307460 #25 Apr 10 2019 10:33:11 %S A307460 1,1,-3,6,-4,-15,54,-87,63,79,-405,912,-1363,1193,510,-4900,12512, %T A307460 -21582,26512,-16540,-24585,113682,-255045,419931,-519210,377176, %U A307460 267957,-1703694,4090424,-7179222,9895981,-9897664,3337614,14790666,-49171217,100903743 %N A307460 Expansion of Product_{k>=1} (1-x^k)^((-1)^k*k^2). %C A307460 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^2, g(n) = 1. %H A307460 Seiichi Manyama, <a href="/A307460/b307460.txt">Table of n, a(n) for n = 0..10000</a> %t A307460 nmax = 40; CoefficientList[Series[Product[(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 09 2019 *) %o A307460 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^((-1)^k*k^2))) %Y A307460 Product_{k>=1} (1-x^k)^((-1)^k*k^b): A010054 (b=0), A281781 (b=1), this sequence (b=2). %Y A307460 Cf. A266964, A283263, A307462. %K A307460 sign %O A307460 0,3 %A A307460 _Seiichi Manyama_, Apr 09 2019