cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307462 Expansion of Product_{k>=1} (1+x^k)^((-1)^k*k^2).

This page as a plain text file.
%I A307462 #29 Apr 10 2019 10:33:53
%S A307462 1,-1,5,-14,36,-97,246,-593,1423,-3351,7699,-17432,38901,-85545,
%T A307462 185862,-399220,848080,-1783682,3716584,-7675916,15722127,-31951330,
%U A307462 64452707,-129102947,256876062,-507854808,997954125,-1949631802,3787674152,-7319306458,14071371173
%N A307462 Expansion of Product_{k>=1} (1+x^k)^((-1)^k*k^2).
%C A307462 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^2, g(n) = -1.
%H A307462 Seiichi Manyama, <a href="/A307462/b307462.txt">Table of n, a(n) for n = 0..10000</a>
%F A307462 a(n) ~ (-1)^n * exp(2*Pi*n^(3/4)/3 + 3*Zeta(3)/(4*Pi^2)) / (4*n^(5/8)). - _Vaclav Kotesovec_, Apr 09 2019
%t A307462 nmax = 40; CoefficientList[Series[Product[(1 + x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 09 2019 *)
%t A307462 nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k))^(4*k^2) / (1 + x^(2*k - 1))^((2*k - 1)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 09 2019 *)
%o A307462 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+x^k)^((-1)^k*k^2)))
%Y A307462 Product_{k>=1} (1+x^k)^((-1)^k*k^b): A083365 (b=0), A284474 (b=1), this sequence (b=2).
%Y A307462 Cf. A027998, A177155, A266964, A294749, A294750, A307460.
%K A307462 sign
%O A307462 0,3
%A A307462 _Seiichi Manyama_, Apr 09 2019