cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307484 Expansion of Product_{k>=1} 1/(1+x^k)^((-1)^k*k^2).

This page as a plain text file.
%I A307484 #23 May 14 2021 08:36:43
%S A307484 1,1,-4,5,3,-17,33,-61,67,63,-392,803,-1070,898,482,-4449,11362,
%T A307484 -18630,21105,-11067,-24871,103562,-227004,359040,-417697,266106,
%U A307484 312987,-1578543,3635615,-6157911,8155892,-7689028,1502546,14707881,-44539735,87849728,-136927058,171008704
%N A307484 Expansion of Product_{k>=1} 1/(1+x^k)^((-1)^k*k^2).
%C A307484 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^n * n^2, g(n) = -1.
%H A307484 Seiichi Manyama, <a href="/A307484/b307484.txt">Table of n, a(n) for n = 0..10000</a>
%t A307484 m = 37; CoefficientList[Series[Product[1/(1+x^k)^((-1)^k*k^2), {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, May 14 2021 *)
%t A307484 nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 + x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, May 14 2021 *)
%o A307484 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^((-1)^k*k^2)))
%Y A307484 Product_{k>=1} 1/(1+x^k)^((-1)^k*k^b): A029838 (b=0), A284467 (b=1), this sequence (b=2).
%Y A307484 Cf. A177155, A307462.
%K A307484 sign
%O A307484 0,3
%A A307484 _Seiichi Manyama_, Apr 10 2019