This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307495 #13 Jan 28 2020 12:13:11 %S A307495 1,1,3,12,57,312,1950,13848,111069,998064,9957186,109305240, %T A307495 1309637274,17006109072,237888664572,3566114897520,57030565449765, %U A307495 969154436550240,17439499379433690,331268545604793240,6624013560942038670,139080391965533653200,3059323407592802838180,70355685298375014175440 %N A307495 Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k. %C A307495 Catalan transform of A000142 (factorial numbers). %C A307495 From _Peter Bala_, Jan 27 2020: (Start) %C A307495 This sequence is the main diagonal of the lower triangular array formed by putting the sequence of factorial numbers in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1. %C A307495 1 %C A307495 1 1 %C A307495 2 3 3 %C A307495 6 9 12 12 %C A307495 24 33 45 57 57 %C A307495 120 153 198 255 312 312 %C A307495 ... %C A307495 Alternatively, the sequence can be obtained by multiplying the sequence of factorial numbers by the array A106566. %C A307495 (End) %H A307495 P. Bala, <a href="/A001517/a001517.pdf">A note on the Catalan transform of a sequence</a> %F A307495 G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108). %F A307495 Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142. %F A307495 a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0. %F A307495 a(n) ~ exp(1) * n!. - _Vaclav Kotesovec_, Aug 10 2019 %t A307495 nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x] %t A307495 nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x] %t A307495 Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]] %Y A307495 Cf. A000108, A000142, A013999, A100100, A106566, A307496. %K A307495 nonn %O A307495 0,3 %A A307495 _Ilya Gutkovskiy_, Apr 10 2019