This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307505 #18 Apr 11 2019 11:59:02 %S A307505 1,0,1,0,0,1,0,0,0,2,0,0,1,0,1,0,1,0,0,0,2,1,0,0,0,1,0,2,0,0,0,0,0,0, %T A307505 0,5,0,0,0,0,1,0,4,0,1,0,1,0,0,0,4,0,1,0,2,1,0,1,0,5,0,0,0,1,0,2,0,0, %U A307505 0,4,0,2,0,1,0,0,0,5,1,0,5,0,0,0,2,0,1,0,4,0,2 %N A307505 Number T(n,k) of partitions of n into distinct parts whose bitwise XOR equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A307505 Alois P. Heinz, <a href="/A307505/b307505.txt">Rows n = 0..360, flattened</a> %H A307505 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %H A307505 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A307505 T(n,k) = 0 if n+k is odd. %e A307505 Triangle T(n,k) begins: %e A307505 1; %e A307505 0, 1; %e A307505 0, 0, 1; %e A307505 0, 0, 0, 2; %e A307505 0, 0, 1, 0, 1; %e A307505 0, 1, 0, 0, 0, 2; %e A307505 1, 0, 0, 0, 1, 0, 2; %e A307505 0, 0, 0, 0, 0, 0, 0, 5; %e A307505 0, 0, 0, 0, 1, 0, 4, 0, 1; %e A307505 0, 1, 0, 0, 0, 4, 0, 1, 0, 2; %e A307505 1, 0, 1, 0, 5, 0, 0, 0, 1, 0, 2; %e A307505 ... %p A307505 b:= proc(n, i, k) option remember; `if`(n=0, x^k, `if`(i<1, 0, %p A307505 b(n, i-1, k)+b(n-i, min(n-i, i-1), Bits[Xor](i, k)))) %p A307505 end: %p A307505 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): %p A307505 seq(T(n), n=0..14); %Y A307505 Bisection (even part) of column k=0 gives A307506. %Y A307505 Row sums give A000009. %Y A307505 Main diagonal gives A050315. %Y A307505 Cf. A050314. %K A307505 nonn,tabl,look,base %O A307505 0,10 %A A307505 _Alois P. Heinz_, Apr 11 2019