This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307506 #11 Apr 12 2019 08:59:27 %S A307506 1,0,0,1,0,1,1,8,1,2,1,9,2,9,10,80,38,39,39,47,40,48,91,126,85,86,136, %T A307506 165,174,244,512,1187,1117,1135,1741,1374,1932,1990,4284,2665,3200, %U A307506 2832,5566,3904,6182,6676,15426,11394,12304,11223,15799,12630,15956,17969 %N A307506 Number of partitions of 2n into distinct parts whose bitwise XOR equals 0. %C A307506 There are no partitions of 2n+1 into distinct parts whose bitwise XOR equals 0. %H A307506 Alois P. Heinz, <a href="/A307506/b307506.txt">Table of n, a(n) for n = 0..750</a> %H A307506 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %H A307506 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A307506 a(n) = A307505(2n,0). %p A307506 b:= proc(n, i, k) option remember; `if`(i*(i+2)/2<n, 0, %p A307506 `if`(n=0, `if`(k=0, 1, 0), b(n, i-1, k)+ %p A307506 b(n-i, min(n-i, i-1), Bits[Xor](i, k)))) %p A307506 end: %p A307506 a:= n-> b(2*n$2, 0): %p A307506 seq(a(n), n=0..60); %Y A307506 Bisection (even part) of column k=0 of A307505. %K A307506 nonn,base %O A307506 0,8 %A A307506 _Alois P. Heinz_, Apr 11 2019