This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307514 #17 Apr 12 2019 10:22:42 %S A307514 1,1,-3,24,-226,2791,-42467,761826,-15714798,366401751,-9528266885, %T A307514 273439284005,-8584541521286,292695692569785,-10771202678289501, %U A307514 425538242701632216,-17964593967281888258,807094224863059707077,-38449142619220645357810,1935991142823285710574298 %N A307514 Expansion of Product_{k>=1} (1-x^k)^((-1)^k*k^k). %C A307514 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^n, g(n) = 1. %H A307514 Seiichi Manyama, <a href="/A307514/b307514.txt">Table of n, a(n) for n = 0..386</a> %F A307514 a(n) ~ -(-1)^n * n^n * (1 - exp(-1)/n - (exp(-1)/2 + 3*exp(-2))/n^2). - _Vaclav Kotesovec_, Apr 12 2019 %t A307514 nmax=20; CoefficientList[Series[Product[(1-x^k)^((-1)^k*k^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 12 2019 *) %o A307514 (PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^((-1)^k*k^k))) %Y A307514 Cf. A010054, A266964, A281781, A283499, A307460, A307497, A307504. %K A307514 sign %O A307514 0,3 %A A307514 _Seiichi Manyama_, Apr 12 2019