This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307515 #7 Apr 12 2019 08:26:32 %S A307515 125,175,245,250,275,325,343,350,375,385,425,455,475,490,500,525,539, %T A307515 550,575,595,605,625,637,650,665,686,700,715,725,735,750,770,775,805, %U A307515 825,833,845,847,850,875,910,925,931,935,950,975,980,1000,1001,1015,1025 %N A307515 Heinz numbers of integer partitions with Durfee square of length > 2. %C A307515 First differs from A307386 in having 7^4 = 2401. %C A307515 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A307515 The Durfee square of an integer partition is the largest square contained in its Young diagram. %C A307515 The enumeration of these partitions by sum is given by A084835. %D A307515 Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289. %H A307515 Gus Wiseman, <a href="/A307515/b307515.txt">Table of n, a(n) for n = 1..22485</a> %H A307515 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000183">St000183: The side length of the Durfee square of an integer partition</a> %H A307515 Wikipedia, <a href="https://en.wikipedia.org/wiki/Durfee_square">Durfee square</a>. %e A307515 The sequence of terms together with their prime indices begins: %e A307515 125: {3,3,3} %e A307515 175: {3,3,4} %e A307515 245: {3,4,4} %e A307515 250: {1,3,3,3} %e A307515 275: {3,3,5} %e A307515 325: {3,3,6} %e A307515 343: {4,4,4} %e A307515 350: {1,3,3,4} %e A307515 375: {2,3,3,3} %e A307515 385: {3,4,5} %e A307515 425: {3,3,7} %e A307515 455: {3,4,6} %e A307515 475: {3,3,8} %e A307515 490: {1,3,4,4} %e A307515 500: {1,1,3,3,3} %e A307515 525: {2,3,3,4} %e A307515 539: {4,4,5} %e A307515 550: {1,3,3,5} %e A307515 575: {3,3,9} %e A307515 595: {3,4,7} %t A307515 durf[n_]:=Length[Select[Range[PrimeOmega[n]], Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[#]]>=#&]]; %t A307515 Select[Range[100], durf[#]>2&] %Y A307515 Positions of numbers > 2 in A257990. %Y A307515 Cf. A006918, A056239, A084835, A112798, A115994, A117485, A252464, A325163, A325170. %K A307515 nonn %O A307515 1,1 %A A307515 _Gus Wiseman_, Apr 12 2019