This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307516 #14 Apr 12 2019 09:33:46 %S A307516 10,14,20,21,22,26,28,30,33,34,38,39,40,42,44,46,50,51,52,55,56,57,58, %T A307516 60,62,63,65,66,68,69,70,74,76,78,80,82,84,85,86,87,88,90,91,92,93,94, %U A307516 95,98,99,100,102,104,105,106,110,111,112,114,115,116,117,118 %N A307516 Numbers whose maximum prime index and minimum prime index differ by more than 1. %C A307516 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum and minimum parts differ by more than 1. The enumeration of these partitions by sum is given by A000094. %C A307516 Differs from A069900 first at n = 43. %e A307516 The sequence of terms together with their prime indices begins: %e A307516 10: {1,3} %e A307516 14: {1,4} %e A307516 20: {1,1,3} %e A307516 21: {2,4} %e A307516 22: {1,5} %e A307516 26: {1,6} %e A307516 28: {1,1,4} %e A307516 30: {1,2,3} %e A307516 33: {2,5} %e A307516 34: {1,7} %e A307516 38: {1,8} %e A307516 39: {2,6} %e A307516 40: {1,1,1,3} %e A307516 42: {1,2,4} %e A307516 44: {1,1,5} %e A307516 46: {1,9} %e A307516 50: {1,3,3} %e A307516 51: {2,7} %e A307516 52: {1,1,6} %e A307516 55: {3,5} %p A307516 with(numtheory): %p A307516 q:= n-> (l-> pi(l[-1])-pi(l[1])>1)(sort([factorset(n)[]])): %p A307516 select(q, [$2..200])[]; # _Alois P. Heinz_, Apr 12 2019 %t A307516 Select[Range[100],PrimePi[FactorInteger[#][[-1,1]]]-PrimePi[FactorInteger[#][[1,1]]]>1&] %Y A307516 Positions of numbers > 1 in A243055. Complement of A000961 and A256617. %Y A307516 Cf. A000094, A000245, A001222, A052126, A056239, A061395, A064989, A069900, A105441, A112798, A307517, A325196. %K A307516 nonn %O A307516 1,1 %A A307516 _Gus Wiseman_, Apr 12 2019