This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307517 #7 Apr 12 2019 09:14:16 %S A307517 12,20,24,28,30,36,40,42,44,45,48,52,56,60,63,66,68,70,72,76,78,80,84, %T A307517 88,90,92,96,99,100,102,104,105,108,110,112,114,116,117,120,124,126, %U A307517 130,132,135,136,138,140,144,148,150,152,153,154,156,160,164,165,168 %N A307517 Numbers with at least two not necessarily distinct prime factors less than the largest prime factor. %C A307517 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with at least two not necessarily distinct parts less than the largest part. The enumeration of these partitions by sum is given by A000094. %e A307517 The sequence of terms together with their prime indices begins: %e A307517 12: {1,1,2} %e A307517 20: {1,1,3} %e A307517 24: {1,1,1,2} %e A307517 28: {1,1,4} %e A307517 30: {1,2,3} %e A307517 36: {1,1,2,2} %e A307517 40: {1,1,1,3} %e A307517 42: {1,2,4} %e A307517 44: {1,1,5} %e A307517 45: {2,2,3} %e A307517 48: {1,1,1,1,2} %e A307517 52: {1,1,6} %e A307517 56: {1,1,1,4} %e A307517 60: {1,1,2,3} %e A307517 63: {2,2,4} %e A307517 66: {1,2,5} %e A307517 68: {1,1,7} %e A307517 70: {1,3,4} %e A307517 72: {1,1,1,2,2} %e A307517 76: {1,1,8} %p A307517 q:= n-> (l-> add(l[i][2], i=1..nops(l)-1)>1)(sort(ifactors(n)[2])): %p A307517 select(q, [$1..200])[]; # _Alois P. Heinz_, Apr 12 2019 %t A307517 Select[Range[100],PrimeOmega[#/Power@@FactorInteger[#][[-1]]]>1&] %Y A307517 Cf. A000094, A000245, A000961, A001222, A052126, A056239, A061395, A064989, A105441, A112798, A243055, A256617, A307516, A325196. %K A307517 nonn %O A307517 1,1 %A A307517 _Gus Wiseman_, Apr 12 2019