A307534 Heinz numbers of strict integer partitions with 3 parts, all of which are odd.
110, 170, 230, 310, 374, 410, 470, 506, 590, 670, 682, 730, 782, 830, 902, 935, 970, 1030, 1034, 1054, 1090, 1265, 1270, 1298, 1370, 1394, 1426, 1474, 1490, 1570, 1598, 1606, 1670, 1705, 1790, 1826, 1886, 1910, 1955, 1970, 2006, 2110, 2134, 2162, 2255, 2266
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 110: {1,3,5} 170: {1,3,7} 230: {1,3,9} 310: {1,3,11} 374: {1,5,7} 410: {1,3,13} 470: {1,3,15} 506: {1,5,9} 590: {1,3,17} 670: {1,3,19} 682: {1,5,11} 730: {1,3,21} 782: {1,7,9} 830: {1,3,23} 902: {1,5,13} 935: {3,5,7} 970: {1,3,25} 1030: {1,3,27} 1034: {1,5,15} 1054: {1,7,11}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],SquareFreeQ[#]&&PrimeNu[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot, nextprime def A307534(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1) for a,k in filter(lambda x:x[0]&1,enumerate(primerange(2,integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2)))) return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024
Comments