cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307534 Heinz numbers of strict integer partitions with 3 parts, all of which are odd.

Original entry on oeis.org

110, 170, 230, 310, 374, 410, 470, 506, 590, 670, 682, 730, 782, 830, 902, 935, 970, 1030, 1034, 1054, 1090, 1265, 1270, 1298, 1370, 1394, 1426, 1474, 1490, 1570, 1598, 1606, 1670, 1705, 1790, 1826, 1886, 1910, 1955, 1970, 2006, 2110, 2134, 2162, 2255, 2266
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A001399.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   110: {1,3,5}
   170: {1,3,7}
   230: {1,3,9}
   310: {1,3,11}
   374: {1,5,7}
   410: {1,3,13}
   470: {1,3,15}
   506: {1,5,9}
   590: {1,3,17}
   670: {1,3,19}
   682: {1,5,11}
   730: {1,3,21}
   782: {1,7,9}
   830: {1,3,23}
   902: {1,5,13}
   935: {3,5,7}
   970: {1,3,25}
  1030: {1,3,27}
  1034: {1,5,15}
  1054: {1,7,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeNu[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, nextprime
    def A307534(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1) for a,k in filter(lambda x:x[0]&1,enumerate(primerange(2,integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024