This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307539 #9 Mar 04 2020 16:42:21 %S A307539 1,2,9,125,2401,161051,4826809,410338673,16983563041,1801152661463, %T A307539 420707233300201,25408476896404831,6582952005840035281, %U A307539 925103102315013629321,73885357344138503765449,12063348350820368238715343,3876269050118516845397872321 %N A307539 Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A307539 Alois P. Heinz, <a href="/A307539/b307539.txt">Table of n, a(n) for n = 0..303</a> %F A307539 a(n) = A330394(A088218(n)). - _Alois P. Heinz_, Mar 03 2020 %e A307539 The square partition (4,4,4,4) has Heinz number prime(4)^4 = 7^4 = 2401. %p A307539 a:= n-> mul(ithprime(i), i=[n$n]): %p A307539 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 03 2020 %t A307539 Table[If[n==0,1,Prime[n]]^n,{n,0,10}] %Y A307539 After a(0) = 1, same as A062457. %Y A307539 Cf. A002024, A047993, A056239, A096771, A106529, A112798, A115720, A174090, A257990, A263297. %Y A307539 Cf. A088218, A330394. %K A307539 nonn %O A307539 0,2 %A A307539 _Gus Wiseman_, Apr 13 2019