cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307539 Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

This page as a plain text file.
%I A307539 #9 Mar 04 2020 16:42:21
%S A307539 1,2,9,125,2401,161051,4826809,410338673,16983563041,1801152661463,
%T A307539 420707233300201,25408476896404831,6582952005840035281,
%U A307539 925103102315013629321,73885357344138503765449,12063348350820368238715343,3876269050118516845397872321
%N A307539 Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A307539 Alois P. Heinz, <a href="/A307539/b307539.txt">Table of n, a(n) for n = 0..303</a>
%F A307539 a(n) = A330394(A088218(n)). - _Alois P. Heinz_, Mar 03 2020
%e A307539 The square partition (4,4,4,4) has Heinz number prime(4)^4 = 7^4 = 2401.
%p A307539 a:= n-> mul(ithprime(i), i=[n$n]):
%p A307539 seq(a(n), n=0..20);  # _Alois P. Heinz_, Mar 03 2020
%t A307539 Table[If[n==0,1,Prime[n]]^n,{n,0,10}]
%Y A307539 After a(0) = 1, same as A062457.
%Y A307539 Cf. A002024, A047993, A056239, A096771, A106529, A112798, A115720, A174090, A257990, A263297.
%Y A307539 Cf. A088218, A330394.
%K A307539 nonn
%O A307539 0,2
%A A307539 _Gus Wiseman_, Apr 13 2019