A307540 Irregular triangle T(n,k) such that squarefree m with gpf(m) = prime(n) in each row are arranged according to increasing values of phi(m)/m.
1, 2, 6, 3, 30, 10, 15, 5, 210, 42, 70, 14, 105, 21, 35, 7, 2310, 330, 462, 66, 770, 110, 154, 1155, 22, 165, 231, 33, 385, 55, 77, 11, 30030, 2730, 4290, 6006, 390, 546, 858, 10010, 78, 910, 1430, 2002, 130, 15015, 182, 286, 1365, 2145, 26, 3003, 195, 273, 429
Offset: 0
Examples
Triangle begins: 1; 2; 6, 3; 30, 10, 15, 5; 210, 42, 70, 14, 105, 21, 35, 7; ... First terms of this sequence appear bottom to top in the chart below. The values of n appear in the header, values m = T(n,k) followed parenthetically by phi(m)/m appear in column n. The x axis plots according to primepi(gpf(m)), while the y axis plots k according to phi(m)/m: 0 1 2 3 4 . . . . . --- 1 ------------------------------------------------ (1/1) . . . . . . . . . . . . . . . . . . 7 . . . 5 (6/7) . . . (4/5) . . . . . . . . . . 35 . . 3 . (24/35) . . (2/3) . . . . . . . . . . . . . . . . 21 . . . . (4/7) . . . 15 . . . . (8/15) . . 2 . . . . (1/2) . . . . . . . . . . . . 105 . . . . (16/35) . . . . 14 . . . 10 (3/7) . . . (2/5) . . . . . . . . . . 70 . . 6 . (12/35) . . (1/3) . . . . . . 42 . . . 30 (2/7) . . . (4/15) . . . . . 210 . . . . (8/35) ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384
- Michael De Vlieger, Small plot of m in A307540 at x = pi(gpf(m)), y = phi(m)/m.
- Michael De Vlieger, Enlarged plot of m in A307540 at x = pi(gpf(m)), y = phi(m)/m.
Crossrefs
Programs
-
Mathematica
Prepend[Array[SortBy[#, Last] &@ Map[{#1, #2, EulerPhi[#1]/#1} & @@ {Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ #], FromDigits@ #} &, Map[Prepend[Reverse@ #, 1] &, Tuples[{1, 0}, # - 1]]] &, 6], {{1, 0, 1}}][[All, All, 1]] // Flatten
Comments