cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307555 Number of Motzkin meanders of length n with an even number of humps.

Original entry on oeis.org

1, 2, 4, 8, 17, 40, 106, 307, 927, 2818, 8480, 25142, 73555, 213204, 615074, 1773036, 5121195, 14843518, 43190084, 126112096, 369264395, 1083378784, 3182684838, 9357797643, 27529874201, 81028448678, 238599098824, 702932296258, 2072003987285, 6111009331876
Offset: 0

Views

Author

Cyril Banderier, Apr 14 2019

Keywords

Comments

A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0) and never goes below the x-axis.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).

Examples

			For n = 3, the a(3) = 8 paths are HHH, HHU, HUH, HUU, UHH, UHU, UUU.
For n=5, there are a(5) = 40 paths: 32 paths with no humps, {H, U}^5; and 8 paths with two humps, HUDUD, UDHUD, UDUDH, UDUDU, UDUHD, UDUUD, UHDUD, UUDUD.
		

Crossrefs

Cf. A307557.

Programs

  • Maple
    a:=gfun[rectoproc]({(15*n^2+45*n+30)*u(n)+(-92*n^2-532*n-696)*u(n+1)+(62*n^2+426*n+672)*u(n+2)+(-32*n^2-264*n-524)*u(n+3)+(-20*n^2-192*n-428)*u(n+4)+(84*n^2+988*n+2848)*u(n+5)+(-70*n^2-906*n-2864)*u(n+6)+(24*n^2+336*n+1140)*u(n+7)+(-3*n^2-45*n-162)*u(n+8), u(0) = 1, u(1) = 2, u(2) = 4, u(3) = 8, u(4) = 17, u(5) = 40, u(6) = 106, u(7) = 307},u(n),remember):
    seq(a(n), n=0..30);

Formula

G.f.: (sqrt((-t^2+1)/(3*t^2-4*t+1))+sqrt((t^2+1)/(5*t^2-4*t+1))-2)/(4*t).
D-finite with recurrence -3*(n+1)*(n-2)*a(n) +12*(2*n^2-4*n-1)*a(n-1) +2*(-35*n^2+107*n-48)*a(n-2) +4*(21*n^2-89*n+80)*a(n-3) +4*(-5*n^2+32*n-43)*a(n-4) +4*(-8*n^2+62*n-115)*a(n-5) +2*(31*n^2-283*n+616)*a(n-6) -4*(23*n-97)*(n-6)*a(n-7) +15*(n-6)*(n-7)*a(n-8)=0. - R. J. Mathar, Jan 25 2023