A307555 Number of Motzkin meanders of length n with an even number of humps.
1, 2, 4, 8, 17, 40, 106, 307, 927, 2818, 8480, 25142, 73555, 213204, 615074, 1773036, 5121195, 14843518, 43190084, 126112096, 369264395, 1083378784, 3182684838, 9357797643, 27529874201, 81028448678, 238599098824, 702932296258, 2072003987285, 6111009331876
Offset: 0
Keywords
Examples
For n = 3, the a(3) = 8 paths are HHH, HHU, HUH, HUU, UHH, UHU, UUU. For n=5, there are a(5) = 40 paths: 32 paths with no humps, {H, U}^5; and 8 paths with two humps, HUDUD, UDHUD, UDUDH, UDUDU, UDUHD, UDUUD, UHDUD, UUDUD.
Links
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Cf. A307557.
Programs
-
Maple
a:=gfun[rectoproc]({(15*n^2+45*n+30)*u(n)+(-92*n^2-532*n-696)*u(n+1)+(62*n^2+426*n+672)*u(n+2)+(-32*n^2-264*n-524)*u(n+3)+(-20*n^2-192*n-428)*u(n+4)+(84*n^2+988*n+2848)*u(n+5)+(-70*n^2-906*n-2864)*u(n+6)+(24*n^2+336*n+1140)*u(n+7)+(-3*n^2-45*n-162)*u(n+8), u(0) = 1, u(1) = 2, u(2) = 4, u(3) = 8, u(4) = 17, u(5) = 40, u(6) = 106, u(7) = 307},u(n),remember): seq(a(n), n=0..30);
Formula
G.f.: (sqrt((-t^2+1)/(3*t^2-4*t+1))+sqrt((t^2+1)/(5*t^2-4*t+1))-2)/(4*t).
D-finite with recurrence -3*(n+1)*(n-2)*a(n) +12*(2*n^2-4*n-1)*a(n-1) +2*(-35*n^2+107*n-48)*a(n-2) +4*(21*n^2-89*n+80)*a(n-3) +4*(-5*n^2+32*n-43)*a(n-4) +4*(-8*n^2+62*n-115)*a(n-5) +2*(31*n^2-283*n+616)*a(n-6) -4*(23*n-97)*(n-6)*a(n-7) +15*(n-6)*(n-7)*a(n-8)=0. - R. J. Mathar, Jan 25 2023
Comments