cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307559 a(n) = floor(n/3)*(n - floor(n/3))*(n - floor(n/3) - 1).

Original entry on oeis.org

0, 0, 2, 6, 12, 24, 40, 60, 90, 126, 168, 224, 288, 360, 450, 550, 660, 792, 936, 1092, 1274, 1470, 1680, 1920, 2176, 2448, 2754, 3078, 3420, 3800, 4200, 4620, 5082, 5566, 6072, 6624, 7200, 7800, 8450, 9126, 9828, 10584, 11368, 12180, 13050, 13950, 14880, 15872
Offset: 1

Views

Author

Emeric Deutsch, Apr 14 2019

Keywords

Comments

a(n) is an upper bound for the irregularity of a graph with n vertices (see Theorem 3.2 of the Tavakoli et al. reference).

Examples

			a(4) = floor(4/3)*(4 - floor(4/3))*(4-floor(4/3)-1) = 1*3*2 = 6.
		

Crossrefs

Cf. A200067.

Programs

  • Maple
    a:=n->floor(n/3)*(n-floor(n/3))*(n-floor(n/3)-1): seq(a(n), n=1..50);

Formula

a(n) = 2*A200067(n).
G.f.: 2*x^3*(1+x)*(1+x^2) / ( (1+x+x^2)^2*(x-1)^4 ). - R. J. Mathar, Jul 22 2022