cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307580 a(n) is the second multiplicative Zagreb index of the Fibonacci cube Gamma(n).

This page as a plain text file.
%I A307580 #17 Oct 17 2024 04:52:28
%S A307580 1,4,1728,191102976,137105941502361600000,
%T A307580 27038645743755029502156994133360640000000000,
%U A307580 645557379413314860145212937623335060473992141864960000000000000000000000000000000000000000
%N A307580 a(n) is the second multiplicative Zagreb index of the Fibonacci cube Gamma(n).
%C A307580 The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
%C A307580 The second multiplicative Zagreb index of a simple connected graph is the product of deg(x)^(deg(x)) over all the vertices x of the graph (see, for example, the I. Gutman reference, p. 16).
%C A307580 In the Maple program, T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825 and the KLavzar - Mollard - Petkovsek reference).
%H A307580 Alois P. Heinz, <a href="/A307580/b307580.txt">Table of n, a(n) for n = 1..10</a>
%H A307580 I. Gutman, <a href="http://www.imvibl.org/buletin/bulletin_1_13_19.pdf">Multiplicative Zagreb indices of trees</a>, Bulletin of International Mathematical Virtual Institute ISSN 1840-4367, Vol. 1, 2011, 13-19.
%H A307580 S. Klavžar, <a href="http://dx.doi.org/10.1007/s10878-011-9433-z">Structure of Fibonacci cubes: a survey</a>, J. Comb. Optim., 25, 2013, 505-522.
%H A307580 S. Klavžar, M. Mollard and M. Petkovšek, <a href="https://doi.org/10.1016/j.disc.2011.03.019">The degree sequence of Fibonacci and Lucas cubes</a>, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
%F A307580 a(n) = Product_{k=1..n} k^(k*T(n,k)), where T(n,k) = Sum_{i=0..k} binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1).
%e A307580 a(2) = 4 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, a(2) = 1^1*1^1*2^2 = 4.
%e A307580 a(4) = 191102976 because the Fibonacci cube Gamma(4) has 5 vertices of degree 2, 2 vertices of degree 3, and 1 vertex of degree 4; consequently, a(4) = (2^2)^5*(3^3)^2*4^4 = 191102976.
%p A307580 T := (n,k)-> add(binomial(n-2*i,k-i)*binomial(i+1,n-k-i+1), i=0..k):
%p A307580 seq(mul(k^(k*T(n,k)), k=1..n), n=1..7);
%Y A307580 Cf. A245825.
%K A307580 nonn
%O A307580 1,2
%A A307580 _Emeric Deutsch_, Apr 15 2019