cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307585 Positive sums of two distinct cubes (of arbitrary sign).

Original entry on oeis.org

1, 7, 8, 9, 19, 26, 27, 28, 35, 37, 56, 61, 63, 64, 65, 72, 91, 98, 117, 124, 125, 126, 127, 133, 152, 169, 189, 208, 215, 216, 217, 218, 224, 243, 271, 279, 280, 296, 316, 331, 335, 341, 342, 343, 344, 351, 370, 386, 387, 397, 407, 448, 468, 469, 485, 488, 504, 511, 512, 513, 520, 539, 547, 559
Offset: 1

Views

Author

Robert Israel, Apr 15 2019

Keywords

Comments

All terms == 0, 1, 2, 7 or 8 (mod 9).

Examples

			a(3) = 8 = 0^3 + 2^3.
a(4) = 9 = 1^3 + 2^3.
a(5) = 19 = (-2)^3 + 3^3.
		

Crossrefs

Contained in A045980. Contains A024670.
Primes in this sequence: A002407.
Cf. A060464.

Programs

  • Maple
    filter:= proc(n) local d, dp, r;
       for d in numtheory:-divisors(n) do
         dp:= n/d;
         r:= 12*dp - 3*d^2;
         if r > 0 and issqr(r) and (sqrt(r)/6 + d/2)::integer then return true fi
       od;
       false
    end proc:
    select(filter, [$0..1000]);
  • Mathematica
    filterQ[n_] := Module[{d, dp, r}, Catch[Do[dp = n/d; r = 12 dp - 3 d^2; If[r > 0 && IntegerQ[Sqrt[r]] && IntegerQ[Sqrt[r]/6 + d/2], Throw[True]], {d, Divisors[n]}]; False]];
    Select[Range[1000], filterQ] (* Jean-François Alcover, Oct 17 2020, after Maple *)