cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307596 G.f. A(x) satisfies: A(x) = (1/(1 + x)) * A(x^2)*A(x^3)*A(x^4)* ... *A(x^k)* ...

This page as a plain text file.
%I A307596 #9 Apr 18 2019 08:37:32
%S A307596 1,-1,0,-1,0,0,-1,2,-1,2,0,3,-4,5,-1,1,-3,0,-1,-4,-1,-2,3,-12,6,-14,
%T A307596 15,-8,17,-16,25,-18,23,0,5,4,15,3,-12,29,-29,41,-59,54,-56,5,-89,68,
%U A307596 -110,84,-137,55,-52,55,-95,104,-53,-9,47,-11,109,-25,157,-139,278,-144,455,-359,413,-289,554
%N A307596 G.f. A(x) satisfies: A(x) = (1/(1 + x)) * A(x^2)*A(x^3)*A(x^4)* ... *A(x^k)* ...
%C A307596 Convolution inverse of A129373.
%H A307596 Seiichi Manyama, <a href="/A307596/b307596.txt">Table of n, a(n) for n = 0..10000</a>
%F A307596 G.f.: Product_{k>=1} 1/(1 + x^k)^A074206(k).
%e A307596 G.f.: A(x) = 1 - x - x^3 - x^6 + 2*x^7 - x^8 + 2*x^9 + 3*x^11 - 4*x^12 + 5*x^13 - x^14 + ...
%t A307596 terms = 70; A[_] = 1; Do[A[x_] = 1/(1 + x) Product[A[x^k], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
%Y A307596 Cf. A074206, A129373, A129374, A318767, A321317.
%K A307596 sign
%O A307596 0,8
%A A307596 _Ilya Gutkovskiy_, Apr 17 2019