cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307599 Expansion of Product_{k>=1} (1 - x^k/(1 - x)).

This page as a plain text file.
%I A307599 #17 May 14 2021 02:52:55
%S A307599 1,-1,-2,-2,-1,2,6,11,15,16,11,-2,-26,-61,-105,-152,-192,-209,-183,
%T A307599 -89,98,400,830,1385,2035,2715,3314,3668,3556,2703,790,-2521,-7550,
%U A307599 -14542,-23591,-34546,-46901,-59670,-71261,-79358,-80830,-71690,-47133,-1684,70504,175168,317232
%N A307599 Expansion of Product_{k>=1} (1 - x^k/(1 - x)).
%H A307599 Seiichi Manyama, <a href="/A307599/b307599.txt">Table of n, a(n) for n = 0..500</a>
%F A307599 G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} 1/(d*(1-x)^d)).
%t A307599 m = 46; CoefficientList[Series[Product[1 - x^k/(1 - x), {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, May 14 2021 *)
%o A307599 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1-x)))
%o A307599 (PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-x)^d)))))
%Y A307599 Convolution inverse of A227682.
%Y A307599 Cf. A126348, A307601, A307602.
%K A307599 sign
%O A307599 0,3
%A A307599 _Seiichi Manyama_, Apr 17 2019