cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A307371 Numbers k such that the digits of sqrt(k) begin with k.

Original entry on oeis.org

0, 1, 98, 99, 100, 9998, 9999, 10000, 999998, 999999, 1000000, 99999998, 99999999, 100000000, 9999999998, 9999999999, 10000000000, 999999999998, 999999999999, 1000000000000, 99999999999998, 99999999999999, 100000000000000, 9999999999999998, 9999999999999999
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 17 2019

Keywords

Comments

From Chai Wah Wu, Jan 17 2020: (Start)
Theorem: A number n is a term if and only if n is 0, 1, 10^(2m), 10^(2m)-1 or 10^(2m)-2 for some m >= 1.
Proof: k <= sqrt(k)*10^m < k+1. For m = 0, the only solutions are 0 and 1. For m > 0, k^2 <= k*10^(2m) < (k+1)^2. This is equivalent to k <= 10^2m < k + 2 + 1/k, i.e., 10^(2m)-2-1/k < k <= 10^(2m). Thus the only solutions for k are 10^(2m), 10^(2m)-1 and 10^(2m)-2. (End)

Examples

			sqrt(9998) = 99.989..., which begins with "9998", so 9998 is in the sequence.
		

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 101*a(n-3) - 100*a(n-6) for n > 6.
G.f.: x^2*(100*x^4 - x^3 + 99*x^2 + 98*x + 1)/(100*x^6 - 101*x^3 + 1). (End)

Extensions

a(12)-a(25) from Jon E. Schoenfield, May 01 2019

A307588 Numbers k such that the digits of k^(1/3) begin with k.

Original entry on oeis.org

0, 1, 31, 999, 1000, 31622, 999999, 1000000, 31622776, 999999999, 1000000000, 31622776601, 999999999999, 1000000000000, 31622776601683, 999999999999999, 1000000000000000, 31622776601683792, 31622776601683793, 999999999999999999, 1000000000000000000
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 17 2019

Keywords

Comments

Program is in A307371.
The subsequence {31, 31622, 31622776, 31622776601, 31622776601683, ...} looks like this subsequence of A052210 {32, 31623, 316228, 3162278, 31622777, ..., 316227766016838, ...}. - Bernard Schott, May 04 2019

Examples

			31622^(1/3) = 31.62251..., which begins with "31622", so 31622 is in the sequence.
The seeming pattern a(3k) = floor(10^(3k-3/2)), a(3k+1) = 10^(3k) - 1, a(3k+2) = 10^(3k), is broken at a(18) = a(19) - 1 = floor(10^(33/2)) - 1. - _Jon E. Schoenfield_, May 01 2019
		

Crossrefs

Cf. A052210 (analog for 3rd power instead of 1/3).

Extensions

a(10)-a(21) from Jon E. Schoenfield, May 01 2019

A331492 Numbers k such that the digits of k^(1/5) begin with k.

Original entry on oeis.org

0, 1, 17, 315, 316, 5623, 99999, 100000, 1778279, 31622776, 562341324, 562341325, 9999999999, 10000000000, 177827941003, 3162277660168, 56234132519034, 999999999999999, 1000000000000000, 17782794100389227, 17782794100389228, 316227766016837932, 316227766016837933
Offset: 1

Views

Author

Chai Wah Wu, Jan 18 2020

Keywords

Comments

The following algorithm will generate all numbers k such that the digits of k^(1/b) begins with k: For each integer m >= 0, compute r = floor(10^(b*m/(b-1))). Let s <= r be the largest integer >= 0 such that (r-s)*10^(b*m) < (r-s+1)^b. Then r, r-1, ... r-s are such numbers k and there are no other such numbers.

Examples

			5623^(1/5) = 5.6233305990931... which starts with the digits 5623, so 5623 is in the sequence.
		

Crossrefs

A331493 Numbers k such that the digits of k^(1/6) begin with k.

Original entry on oeis.org

0, 1, 15, 250, 251, 3980, 3981, 63095, 999999, 1000000, 15848931, 251188642, 251188643, 3981071705, 63095734447, 63095734448, 999999999999, 1000000000000, 15848931924610, 15848931924611, 251188643150957, 251188643150958, 3981071705534972, 63095734448019324
Offset: 1

Views

Author

Chai Wah Wu, Jan 18 2020

Keywords

Examples

			63095^(1/6) =  6.309561203942..., which starts with the digits 63095, so 63095 is a term.
		

Crossrefs

A331494 Numbers k such that the digits of k^(1/7) begin with k.

Original entry on oeis.org

0, 1, 14, 215, 3162, 46415, 681291, 681292, 9999999, 10000000, 146779926, 2154434689, 2154434690, 31622776601, 464158883361, 6812920690579, 99999999999999, 100000000000000, 1467799267622069, 21544346900318837, 316227766016837933, 4641588833612778892, 68129206905796128549
Offset: 1

Views

Author

Chai Wah Wu, Jan 18 2020

Keywords

Examples

			681291^(1/7) = 6.8129191633529... which starts with the digits 681291, so 681291 is a term.
		

Crossrefs

A331495 Numbers k such that the digits of k^(1/8) begin with k.

Original entry on oeis.org

0, 1, 13, 192, 193, 2682, 37275, 517947, 7196856, 99999999, 100000000, 1389495494, 19306977288, 268269579527, 3727593720314, 51794746792311, 51794746792312, 719685673001151, 719685673001152, 9999999999999999, 10000000000000000, 138949549437313763, 1930697728883250166
Offset: 1

Views

Author

Chai Wah Wu, Jan 18 2020

Keywords

Examples

			7196856^(1/8) = 7.1968566387600... which starts with the digits 7196856, so 7196856 is a term.
		

Crossrefs

A331496 Numbers k such that the digits of k^(1/9) begin with k.

Original entry on oeis.org

0, 1, 13, 177, 2371, 31622, 421696, 5623413, 74989420, 999999999, 1000000000, 13335214321, 177827941003, 2371373705661, 31622776601683, 421696503428582, 5623413251903490, 74989420933245582, 999999999999999999, 1000000000000000000, 13335214321633240256, 177827941003892280122
Offset: 1

Views

Author

Chai Wah Wu, Jan 18 2020

Keywords

Examples

			13335214321^(1/9) = 13.33521432156287... which starts with the digits 13335214321, so 13335214321 is a term.
		

Crossrefs

A331497 Numbers k such that the digits of k^(1/10) begin with k.

Original entry on oeis.org

0, 1, 12, 166, 2154, 27825, 359381, 4641588, 59948424, 59948425, 774263682, 9999999999, 10000000000, 129154966501, 1668100537199, 1668100537200, 21544346900318, 278255940220712, 3593813663804627, 46415888336127788, 599484250318941014, 7742636826811270597, 99999999999999999999
Offset: 1

Views

Author

Chai Wah Wu, Jan 18 2020

Keywords

Examples

			59948425^(1/10) = 5.994842502870... which starts with the digits 59948425 so 59948425 is a term.
		

Crossrefs

Showing 1-8 of 8 results.