This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307604 #11 Mar 19 2021 11:52:49 %S A307604 1,1,3,6,17,28,72,122,282,493,1027,1790,3673,6300,12205,21117,39782, %T A307604 67989,124937,212189,381705,644625,1136315,1905352,3312916,5513005, %U A307604 9443362,15624026,26445046,43451200,72751824,118792691,196966722,319714816,525316191,847734183,1381904765 %N A307604 G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ... %C A307604 Euler transform of A050369. %H A307604 Vaclav Kotesovec, <a href="/A307604/b307604.txt">Table of n, a(n) for n = 0..5000</a> %F A307604 G.f.: Product_{k>=1} 1/(1 - x^k)^(k*A074206(k)). %F A307604 a(n) ~ (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(50*(2+r))) * exp(12/625 + ((2+r)/(1+r)) * (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(2+r)) * n^((1+r)/(2+r))) / (A^(144/625) * sqrt(2*Pi*(2+r)) * n^(1/2 + 1/(50*(2+r)))), where r = A107311 is the root of the equation zeta(r)=2 and A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Mar 18 2021 %e A307604 G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 17*x^4 + 28*x^5 + 72*x^6 + 122*x^7 + 282*x^8 + 493*x^9 + ... %t A307604 terms = 36; A[_] = 1; Do[A[x_] = 1/(1 - x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] %Y A307604 Cf. A050369, A074206, A129374, A307605, A307606, A307607. %K A307604 nonn %O A307604 0,3 %A A307604 _Ilya Gutkovskiy_, Apr 18 2019