A307611 An Ackermann-like function arising from a puzzle by Hans Zantema.
1, 2, 4, 8, 32
Offset: 1
Keywords
Examples
a(6) = f_0(f_1(f_2(f_3(f_4(1))))) = f_0(f_1(f_2(f_3(2)))) = f_0(f_1(f_2(4))) = f_0(f_1(65536)) = f_0(2^65536) = 2^65537.
References
- Dan Velleman and Stan Wagon, Bicycle or Unicycle?, MAA Press, to appear.
Links
- Wikipedia, Knuth's up-arrow notation
Crossrefs
Cf. A281701.
Programs
-
Mathematica
f[n_][x_] := If[n == 0, 2x, Nest[f[n-1], 1, x]] F[n_] := Composition @@ (f /@ Range[0, n]) a[n_] := If[n <= 1, n, F[n-2][1]]
Formula
Let f_n(x) = 2↑↑...↑x, with n Knuth up-arrows, so f_0(x) = 2x,
f_1(x) = 2^x, f_2(x) = 2↑↑x = 2^2^...^2 with x copies of 2, etc. Let
F_n be the composition of f_0, f_1,...,f_n. Then a(n) = F_(n-2)(1).
Comments