A307628 Primes p such that 2 is a primitive root modulo p while 32 is not.
11, 61, 101, 131, 181, 211, 421, 461, 491, 541, 661, 701, 821, 941, 1061, 1091, 1171, 1291, 1301, 1381, 1451, 1531, 1571, 1621, 1741, 1861, 1901, 1931, 2131, 2141, 2221, 2371, 2531, 2621, 2741, 2851, 2861, 3011, 3371, 3461, 3491, 3571, 3581, 3691, 3701, 3851, 3931
Offset: 1
Keywords
Examples
For p = 61, the multiplicative order of 2 modulo 61 is 60, while 32^12 == 2^(5*12) == 1 (mod 61), so 61 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant
- Wikipedia, Artin's conjecture on primitive roots
Programs
-
Maple
select(p -> isprime(p) and numtheory:-order(2,p) = p-1, [seq(i,i=1..10000,10)]); # Robert Israel, Apr 23 2019
-
Mathematica
{11}~Join~Select[Prime@ Range[11, 550], And[FreeQ[#, 32], ! FreeQ[#, 2]] &@ PrimitiveRootList@ # &] (* Michael De Vlieger, Apr 23 2019 *)
-
PARI
forprime(p=3, 4000, if(znorder(Mod(2, p))==(p-1) && p%5==1, print1(p, ", ")))
Comments