This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307657 #5 Apr 21 2019 07:50:31 %S A307657 1,-1,3,0,1,10,-13,33,-24,26,22,-53,148,-181,233,-146,69,157,-373,721, %T A307657 -884,1071,-1076,1041,-444,-425,1767,-3225,5232,-7144,7942,-6920,4999, %U A307657 -1112,-5947,15481,-24273,32103,-39255,43839,-37560,18235,6158,-35079,81689,-134919,167667,-179256 %N A307657 G.f. A(x) satisfies: 1/(1 + x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ... %C A307657 Convolution inverse of A307649. %F A307657 G.f.: Product_{k>=1} 1/(1 + x^k)^(mu(k)*k). %e A307657 G.f.: A(x) = 1 - x + 3*x^2 + x^4 + 10*x^5 - 13*x^6 + 33*x^7 - 24*x^8 + 26*x^9 + 22*x^10 - 53*x^11 + 148*x^12 - 181*x^13 + ... %t A307657 terms = 47; CoefficientList[Series[Product[1/(1 + x^k)^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x] %t A307657 terms = 47; A[_] = 1; Do[A[x_] = 1/((1 + x) Product[A[x^k]^k, {k, 2, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] %Y A307657 Cf. A008683, A055615, A117211, A307649. %K A307657 sign %O A307657 0,3 %A A307657 _Ilya Gutkovskiy_, Apr 20 2019