This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307659 #5 Apr 21 2019 07:50:45 %S A307659 1,2,-2,-12,-10,12,44,40,-26,-132,-60,104,156,-152,-136,80,1030,204, %T A307659 -1548,-3736,1780,5096,7496,-8208,-9956,-11416,30824,2784,-296,-72768, %U A307659 62032,22752,157126,-290356,-41420,-244296,896996,-285896,436040,-2139120,1661940,-1028632,4535608,-6487744,4125224 %N A307659 G.f. A(x) satisfies: (1 + x)/(1 - x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ... %C A307659 Convolution of A307648 and A307649. %F A307659 G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(mu(k)*k). %e A307659 G.f.: A(x) = 1 + 2*x - 2*x^2 - 12*x^3 - 10*x^4 + 12*x^5 + 44*x^6 + 40*x^7 - 26*x^8 - 132*x^9 - 60*x^10 + ... %t A307659 terms = 44; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x] %t A307659 terms = 44; A[_] = 1; Do[A[x_] = (1 + x)/((1 - x) Product[A[x^k]^k, {k, 2, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] %Y A307659 Cf. A008683, A055615, A307648, A307649, A307658. %K A307659 sign %O A307659 0,2 %A A307659 _Ilya Gutkovskiy_, Apr 20 2019