cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307671 Decimal expansion of the alternating convergent series S = Sum_{k>=0} (-1)^k*f(k), where f(k) = harmonic(2^k) - k*log(2) - gamma, harmonic(m) is the Sum_{j=1..m} 1/j, and gamma is Euler-Mascheroni constant.

Original entry on oeis.org

2, 7, 2, 3, 4, 3, 5, 8, 7, 7, 0, 7, 5, 9, 6, 7, 6, 4, 7, 8, 4, 0, 7, 0, 6, 7, 6, 9, 2, 3, 9, 5, 5, 5, 7, 8, 7, 4, 8, 2, 2, 5, 1, 0, 8, 0, 6, 4, 3, 9, 5, 8, 7, 1, 6, 4, 5, 3, 8, 9, 6, 2, 0, 4, 1, 2, 8, 3, 7, 5, 9, 7, 0, 0, 5, 7, 2, 9, 6, 5, 1, 1, 5, 0, 1, 2, 9, 8, 4, 6, 1, 7, 7, 3, 1, 3, 1, 7, 3, 9, 8, 0, 2, 7
Offset: 0

Views

Author

Luis H. Gallardo, Apr 20 2019

Keywords

Examples

			0.272343587707596764784070676923955578748225108064395871645389620412837597...
		

Crossrefs

Cf. A001620 (Euler-Mascheroni), A001008/A002805 (harmonic), A002162 (log(2)), A094640 (alternate Euler's constant), A256921 (a similar constant).

Programs

  • Maple
    evalf(Sum((-1)^k*(harmonic(2^k) - k*log(2) - gamma), k=0..infinity), 120); # Vaclav Kotesovec, Apr 30 2019
  • Mathematica
    digits = 104; s = NSum[(-1)^k*(HarmonicNumber[2^k] - k*Log[2] - EulerGamma), {k, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10]; RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Apr 28 2019 *)
  • PARI
    default(realprecision, 120); sumalt(k=0, (-1)^k*(psi(2^k+1) - k*log(2))) \\ Vaclav Kotesovec, Apr 30 2019