A307672 The right half of a bi-infinite word invariant under the balanced morphism, {0->501, 1->210, 2->123, 3->432, 4->345, 5->054}, starting from axiom a(0)=0.
0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 5, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 5, 0, 1, 0, 5, 4, 5, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 5, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 5, 0
Offset: 0
Keywords
Examples
The full ternary tree starts: 0 501 054501210
Links
- Peter Munn, Table of n, a(n) for n = 0..5000
- R. W. Gosper and J. Ziegler-Hunts, Strange Series for Sierpinski’s Gasket, G4G10 Exchange Book, Vol. 2 (2012), 59-60.
- Sean A. Irvine, Java program (github).
- Bradley Klee, Sierpiński Arrowhead, Right Half.
- Bradley Klee, Sierpiński Arrowhead, Left and Right.
- Peter Munn, Mapped curves aligned with Sierpiński Gasket.
Crossrefs
Programs
-
Mathematica
Arrowhead = {0->{5, 0, 1}, 1->{2, 1, 0}, 2->{1, 2, 3}, 3->{4, 3, 2}, 4->{3, 4, 5}, 5->{0, 5, 4}}; aR[n_]:=Nest[Part[Flatten[#/.Arrowhead], 2;;-1]&,{0},n];aR[7] (* Second program: *) S = SubstitutionSystem[{0 -> {5, 0, 1}, 1 -> {2, 1, 0}, 2 -> {1, 2, 3}, 3 -> {4, 3, 2}, 4 -> {3, 4, 5}, 5 -> {0, 5, 4}}, {0}, 5][[-1]]; S[[Ceiling[ Length[S]/2];;]] (* Jean-François Alcover, May 08 2019 *)
Comments