This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307674 #26 Jun 02 2019 04:36:43 %S A307674 1,5,13,29,56,107,197,365,679,1280,2432,4679,9075,17729,34823,68701, %T A307674 135967,269765,536200,1067284,2126648,4240978,8462667,16895039, %U A307674 33742281,67408931,134697820,269204657,538104774,1075723097,2150667905,4300088957,8598178019 %N A307674 L.g.f.: log(Product_{k>=1} 1/(1 - x^k/(1 - x))) = Sum_{k>=1} a(k)*x^k/k. %F A307674 Product {k>=1} 1/(1 - x^k/(1 - x)) = exp(Sum_{k>=1} a(k)*x^k/k). %e A307674 L.g.f.: L(x) = x/1 + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 56*x^5/5 + 107*x^6/6 + 197*x^7/7 + 365*x^8/8 + ... . %e A307674 exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 35*x^5 + 76*x^6 + 162*x^7 + 342*x^8 + ... + A227682(n)*x^n + ... . %o A307674 (PARI) N=66; x='x+O('x^N); Vec(x*deriv(log(1/prod(k=1, N, 1-x^k/(1-x))))) %o A307674 (PARI) N=66; x='x+O('x^N); Vec(x*deriv(sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-x)^d))))) %Y A307674 Cf. A227682, A307599, A307675. %K A307674 nonn %O A307674 1,2 %A A307674 _Seiichi Manyama_, Apr 21 2019