This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307699 #51 Jul 24 2021 01:14:00 %S A307699 0,1,2,6,8,12,14,18,20,24,26,30,32,38,42,44,48,50,54,60,62,66,68,72, %T A307699 74,80,84,86,90,92,98,102,104,108,110,114,122,126,128,132,134,138,140, %U A307699 146,150,152,158,164,168,170,174,180,182,186,192,194,198,200,206 %N A307699 Numbers k such that there is no integer partition of k with exactly k-1 submultisets. %C A307699 After a(1) = 0, first differs from A229488 in lacking 56. %C A307699 The number of submultisets of a partition is the product of its multiplicities, each plus one. %C A307699 {a(n)-1} contains all odd numbers m = p*q*... such that gcd(p-1, q-1, ...) > 2. In particular, {a(n)-1} contains all powers of all primes > 3. Proof: If g is the greatest common divisor, then all factors of k are congruent to 1 modulo g, and thus all multiplicities of any valid multiset are divisible by g. However, the required sum is congruent to 2 modulo g, and so no such multiset can exist. - _Charlie Neder_, Jun 06 2019 %e A307699 The sequence of positive terms together with their prime indices begins: %e A307699 1: {} %e A307699 2: {1} %e A307699 6: {1,2} %e A307699 8: {1,1,1} %e A307699 12: {1,1,2} %e A307699 14: {1,4} %e A307699 18: {1,2,2} %e A307699 20: {1,1,3} %e A307699 24: {1,1,1,2} %e A307699 26: {1,6} %e A307699 30: {1,2,3} %e A307699 32: {1,1,1,1,1} %e A307699 38: {1,8} %e A307699 42: {1,2,4} %e A307699 44: {1,1,5} %e A307699 48: {1,1,1,1,2} %e A307699 50: {1,3,3} %e A307699 54: {1,2,2,2} %e A307699 60: {1,1,2,3} %e A307699 Partitions realizing the desired number of submultisets for each non-term are: %e A307699 3: (3) %e A307699 4: (22) %e A307699 5: (41) %e A307699 7: (511) %e A307699 9: (621) %e A307699 10: (4411) %e A307699 11: (71111) %e A307699 13: (9211) %e A307699 15: (9111111) %e A307699 16: (661111) %e A307699 17: (9521) %e A307699 19: (94411) %e A307699 21: (981111) %e A307699 22: (88111111) %e A307699 23: (32222222222) %e A307699 25: (99421) %e A307699 27: (3222222222222) %e A307699 28: (994411) %e A307699 29: (98222222) %t A307699 Select[Range[50],Function[n,Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])==n-1&]=={}]] %Y A307699 Positions of zeros in A325836. %Y A307699 Cf. A002033, A088880, A088881, A098859, A108917, A126796, A276024, A325694, A325792, A325798, A325828, A325830, A325833, A325834, A325835. %K A307699 nonn %O A307699 1,3 %A A307699 _Gus Wiseman_, May 30 2019 %E A307699 More terms from _Alois P. Heinz_, May 30 2019