This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307719 #28 Jan 12 2021 21:37:06 %S A307719 0,0,0,1,1,1,2,1,3,2,4,2,7,2,8,4,8,4,15,4,16,7,15,7,26,7,23,11,26,10, %T A307719 43,9,35,16,38,16,54,14,49,23,54,18,79,18,66,31,64,25,100,25,89,36,85, %U A307719 31,127,35,104,46,104,39,167,36,125,58,129,52,185,45 %N A307719 Number of partitions of n into 3 mutually coprime parts. %C A307719 The Heinz numbers of these partitions are the intersection of A014612 (triples) and A302696 (pairwise coprime). - _Gus Wiseman_, Oct 16 2020 %H A307719 Fausto A. C. Cariboni, <a href="/A307719/b307719.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..2000 from Robert Israel) %H A307719 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A307719 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} [gcd(i,j) * gcd(j,n-i-j) * gcd(i,n-i-j) = 1], where [] is the Iverson bracket. %F A307719 a(n > 2) = A220377(n) + 1. - _Gus Wiseman_, Oct 15 2020 %e A307719 There are 2 partitions of 9 into 3 mutually coprime parts: 7+1+1 = 5+3+1, so a(9) = 2. %e A307719 There are 4 partitions of 10 into 3 mutually coprime parts: 8+1+1 = 7+2+1 = 5+4+1 = 5+3+2, so a(10) = 4. %e A307719 There are 2 partitions of 11 into 3 mutually coprime parts: 9+1+1 = 7+3+1, so a(11) = 2. %e A307719 There are 7 partitions of 12 into 3 mutually coprime parts: 10+1+1 = 9+2+1 = 8+3+1 = 7+4+1 = 6+5+1 = 7+3+2 = 5+4+3, so a(12) = 7. %p A307719 N:= 200: # to get a(0)..a(N) %p A307719 A:= Array(0..N): %p A307719 for a from 1 to N/3 do %p A307719 for b from a to (N-a)/2 do %p A307719 if igcd(a,b) > 1 then next fi; %p A307719 ab:= a*b; %p A307719 for c from b to N-a-b do %p A307719 if igcd(ab,c)=1 then A[a+b+c]:= A[a+b+c]+1 fi %p A307719 od od od: %p A307719 convert(A,list); # _Robert Israel_, May 09 2019 %t A307719 Table[Sum[Sum[Floor[1/(GCD[i, j] GCD[j, n - i - j] GCD[i, n - i - j])], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 100}] %t A307719 Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@#&]],{n,0,100}] (* _Gus Wiseman_, Oct 15 2020 *) %Y A307719 A023022 is the version for pairs. %Y A307719 A220377 is the strict case, with ordered version A220377*6. %Y A307719 A327516 counts these partitions of any length, with strict version A305713 and Heinz numbers A302696. %Y A307719 A337461 is the ordered version. %Y A307719 A337563 is the case with no 1's. %Y A307719 A337599 is the pairwise non-coprime instead of pairwise coprime version. %Y A307719 A337601 only requires the distinct parts to be pairwise coprime. %Y A307719 A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions. %Y A307719 A002865 counts partitions with no 1's, with strict case A025147. %Y A307719 A007359 and A337485 count pairwise coprime partitions with no 1's. %Y A307719 A200976 and A328673 count pairwise non-coprime partitions. %Y A307719 Cf. A007304, A014612, A078374, A082024, A284825, A304709, A337462, A337605. %K A307719 nonn,look %O A307719 0,7 %A A307719 _Wesley Ivan Hurt_, Apr 24 2019