This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307726 #12 Apr 29 2019 21:03:01 %S A307726 0,0,0,0,1,1,2,2,2,2,3,3,3,3,3,3,4,2,4,3,4,4,4,2,4,3,4,4,4,3,5,3,6,4, %T A307726 7,4,7,2,5,4,6,3,5,3,5,5,6,2,7,3,7,4,6,2,8,3,7,4,6,2,7,3,6,4,7,2,9,2, %U A307726 7,5,7,2,9,3,7,6,7,3,9,2,8,4,6,4,10,3,9,4,7,3,11,4,8,3,7,2,10,2,8,3,8 %N A307726 Number of partitions of n into 2 prime powers (not including 1). %H A307726 Robert Israel, <a href="/A307726/b307726.txt">Table of n, a(n) for n = 0..10000</a> %H A307726 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A307726 a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^A246655(k)). %e A307726 a(10) = 3 because we have [8, 2], [7, 3] and [5, 5]. %p A307726 # note that this requires A246655 to be pre-computed %p A307726 f:= proc(n, k, pmax) option remember; %p A307726 local t, p, j; %p A307726 if n = 0 then return `if`(k=0, 1, 0) fi; %p A307726 if k = 0 then return 0 fi; %p A307726 if n > k*pmax then return 0 fi; %p A307726 t:= 0: %p A307726 for p in A246655 do %p A307726 if p > pmax then return t fi; %p A307726 t:= t + add(procname(n-j*p, k-j, min(p-1, n-j*p)), j=1..min(k, floor(n/p))) %p A307726 od; %p A307726 t %p A307726 end proc: %p A307726 map(f, [$0..100]); # _Robert Israel_, Apr 29 2019 %t A307726 Array[Count[IntegerPartitions[#, {2}], _?(AllTrue[#, PrimePowerQ] &)] &, 101, 0] %Y A307726 Cf. A000961, A023894, A061358, A071068, A071330, A071331, A246655, A280242, A307727. %K A307726 nonn,look %O A307726 0,7 %A A307726 _Ilya Gutkovskiy_, Apr 24 2019