A307752 Number of n-digit palindromic pentagonal numbers.
3, 1, 0, 2, 1, 1, 2, 2, 0, 4, 0, 0, 3, 1, 1, 1, 3, 2, 4, 1, 3, 1, 1, 0, 3, 3, 2, 2, 2, 0, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
There are only two 4-digit pentagonal number that are palindromic, 1001 and 2882. Thus, a(4)=2.
Links
- G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95.
Programs
-
Mathematica
A002069 = {0, 1, 5, 22, 1001, 2882, 15251, 720027, 7081807, 7451547, 26811862, 54177145, 1050660501, 1085885801, 1528888251, 2911771192, 2376574756732, 5792526252975, 5875432345785, 10810300301801, 264571020175462, 5292834004382925, 10808388588380801, 15017579397571051, 76318361016381367, 150621384483126051, 735960334433069537, 1003806742476083001, 1087959810189597801, 2716280733370826172}; Table[Length[Select[A002069, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 18}] (* Robert Price, Apr 26 2019 *)
-
Python
def afind(terms): m, n, c = 0, 1, 0 while n <= terms: p = m*(3*m-1)//2 s = str(p) if len(s) == n: if s == s[::-1]: c += 1 else: print(c, end=", ") n, c = n+1, int(s == s[::-1]) m += 1 afind(14) # Michael S. Branicky, Mar 01 2021
Extensions
a(19)-a(22) from Michael S. Branicky, Mar 01 2021
a(23)-a(40) from Bert Dobbelaere, Apr 15 2025
Comments