cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307752 Number of n-digit palindromic pentagonal numbers.

Original entry on oeis.org

3, 1, 0, 2, 1, 1, 2, 2, 0, 4, 0, 0, 3, 1, 1, 1, 3, 2, 4, 1, 3, 1, 1, 0, 3, 3, 2, 2, 2, 0, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Robert Price, Apr 26 2019

Keywords

Comments

Number of n-digit terms in A002069.

Examples

			There are only two 4-digit pentagonal number that are palindromic, 1001 and 2882. Thus, a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    A002069 = {0, 1, 5, 22, 1001, 2882, 15251, 720027, 7081807, 7451547, 26811862, 54177145, 1050660501, 1085885801, 1528888251, 2911771192, 2376574756732, 5792526252975, 5875432345785, 10810300301801, 264571020175462, 5292834004382925, 10808388588380801, 15017579397571051, 76318361016381367, 150621384483126051, 735960334433069537, 1003806742476083001, 1087959810189597801, 2716280733370826172};
    Table[Length[Select[A002069, IntegerLength[#] == n  || (n == 1 && # == 0) &]], {n, 18}] (* Robert Price, Apr 26 2019 *)
  • Python
    def afind(terms):
      m, n, c = 0, 1, 0
      while n <= terms:
        p = m*(3*m-1)//2
        s = str(p)
        if len(s) == n:
           if s == s[::-1]: c += 1
        else:
          print(c, end=", ")
          n, c = n+1, int(s == s[::-1])
        m += 1
    afind(14) # Michael S. Branicky, Mar 01 2021

Extensions

a(19)-a(22) from Michael S. Branicky, Mar 01 2021
a(23)-a(40) from Bert Dobbelaere, Apr 15 2025