This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307756 #11 May 06 2019 08:33:04 %S A307756 1,2,4,10,26,66,184,472,1268,3340,8748,22772,59102,151590,386830, %T A307756 983914,2489384,6263284,15703204,39221884,97498736,241538472, %U A307756 596115898,1465958522,3595196600,8788765304,21421616934,52080152238,126268822824,305365334180,736770528064 %N A307756 Exponential convolution of number of partitions into distinct parts (A000009) with themselves. %H A307756 Vaclav Kotesovec, <a href="/A307756/b307756.txt">Table of n, a(n) for n = 0..3000</a> %F A307756 E.g.f.: (Sum_{k>=0} A000009(k)*x^k/k!)^2. %F A307756 a(n) = Sum_{k=0..n} binomial(n,k)*A000009(k)*A000009(n-k). %F A307756 a(n) ~ exp(Pi*sqrt(2*n/3)) * 2^(n - 5/2) / (sqrt(3) * n^(3/2)). - _Vaclav Kotesovec_, May 06 2019 %p A307756 b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( %p A307756 `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) %p A307756 end: %p A307756 a:= n-> add(binomial(n, j)*b(j)*b(n-j), j=0..n): %p A307756 seq(a(n), n=0..30); # _Alois P. Heinz_, Apr 26 2019 %t A307756 nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]! %t A307756 Table[Sum[Binomial[n, k] PartitionsQ[k] PartitionsQ[n - k], {k, 0, n}], {n, 0, 30}] %Y A307756 Cf. A000009, A022567, A266232, A307755. %K A307756 nonn %O A307756 0,2 %A A307756 _Ilya Gutkovskiy_, Apr 26 2019