cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307756 Exponential convolution of number of partitions into distinct parts (A000009) with themselves.

This page as a plain text file.
%I A307756 #11 May 06 2019 08:33:04
%S A307756 1,2,4,10,26,66,184,472,1268,3340,8748,22772,59102,151590,386830,
%T A307756 983914,2489384,6263284,15703204,39221884,97498736,241538472,
%U A307756 596115898,1465958522,3595196600,8788765304,21421616934,52080152238,126268822824,305365334180,736770528064
%N A307756 Exponential convolution of number of partitions into distinct parts (A000009) with themselves.
%H A307756 Vaclav Kotesovec, <a href="/A307756/b307756.txt">Table of n, a(n) for n = 0..3000</a>
%F A307756 E.g.f.: (Sum_{k>=0} A000009(k)*x^k/k!)^2.
%F A307756 a(n) = Sum_{k=0..n} binomial(n,k)*A000009(k)*A000009(n-k).
%F A307756 a(n) ~ exp(Pi*sqrt(2*n/3)) * 2^(n - 5/2) / (sqrt(3) * n^(3/2)). - _Vaclav Kotesovec_, May 06 2019
%p A307756 b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
%p A307756      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
%p A307756     end:
%p A307756 a:= n-> add(binomial(n, j)*b(j)*b(n-j), j=0..n):
%p A307756 seq(a(n), n=0..30);  # _Alois P. Heinz_, Apr 26 2019
%t A307756 nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]!
%t A307756 Table[Sum[Binomial[n, k] PartitionsQ[k] PartitionsQ[n - k], {k, 0, n}], {n, 0, 30}]
%Y A307756 Cf. A000009, A022567, A266232, A307755.
%K A307756 nonn
%O A307756 0,2
%A A307756 _Ilya Gutkovskiy_, Apr 26 2019