This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307765 #18 Mar 02 2021 02:11:53 %S A307765 3,1,0,2,2,2,4,0,0,3,1,0,3,1,2,1,4,1,2,1,2,0 %N A307765 Number of palindromic hexagonal numbers with exactly n digits. %C A307765 Number of terms in A054969 with exactly n digits. %H A307765 G. J. Simmons, <a href="/A002778/a002778_2.pdf">Palindromic powers</a>, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95. %e A307765 There are only two 4-digit hexagonal numbers that are palindromic, 3003 and 5995. Thus, a(4)=2. %t A307765 A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151}; Table[Length[ Select[A054969, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 19}] %o A307765 (Python) %o A307765 def afind(terms): %o A307765 m, n, c = 0, 1, 0 %o A307765 while n <= terms: %o A307765 p = m*(2*m-1) %o A307765 s = str(p) %o A307765 if len(s) == n: %o A307765 if s == s[::-1]: c += 1 %o A307765 else: %o A307765 print(c, end=", ") %o A307765 n, c = n+1, int(s == s[::-1]) %o A307765 m += 1 %o A307765 afind(14) # _Michael S. Branicky_, Mar 01 2021 %Y A307765 Cf. A000384, A054969, A054970, A082721, A263618, A307752. %K A307765 nonn,base,more %O A307765 1,1 %A A307765 _Robert Price_, Apr 27 2019 %E A307765 a(20)-a(22) from _Michael S. Branicky_, Mar 01 2021