cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307770 Expansion of e.g.f. 1/(1 - Sum_{k>=1} prime(k)*x^k/k!).

This page as a plain text file.
%I A307770 #8 Jun 24 2021 07:56:16
%S A307770 1,2,11,89,957,12871,207717,3910931,84155053,2037195551,54795228241,
%T A307770 1621233039941,52328310410427,1829742961027269,68901415049874055,
%U A307770 2779901582389463177,119635322278784511015,5470390958849723994819,264850557367286330886261,13535194864326763053170325
%N A307770 Expansion of e.g.f. 1/(1 - Sum_{k>=1} prime(k)*x^k/k!).
%H A307770 Alois P. Heinz, <a href="/A307770/b307770.txt">Table of n, a(n) for n = 0..386</a>
%p A307770 a:= proc(n) option remember; `if`(n=0, 1, add(
%p A307770       binomial(n, j)*ithprime(j)*a(n-j), j=1..n))
%p A307770     end:
%p A307770 seq(a(n), n=0..20);  # _Alois P. Heinz_, Jun 24 2021
%t A307770 nmax = 19; CoefficientList[Series[1/(1 - Sum[Prime[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
%Y A307770 Cf. A000040, A007446, A030017, A302191, A302192, A302194.
%K A307770 nonn
%O A307770 0,2
%A A307770 _Ilya Gutkovskiy_, Apr 27 2019