This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307783 #15 Jan 06 2023 09:28:07 %S A307783 1,5,62,1472,57228,3300052,264163120,28004426240,3796084024832, %T A307783 640290996560896,131495036625989504,32300689159458652160, %U A307783 9350873610168606862080,3150550820854335942423808,1222211647879605626853439488,540858935979668390014623285248,270804098518125729769134021574656 %N A307783 The permanent of an n X n symmetric Toeplitz matrix M(n) whose first row consists of n, n-1, ..., 1. %C A307783 The matrix M(n) differs from that of A204235 in using for the first row the positive integers 1, 2,..., n in decreasing order in place of in increasing order (see examples). %C A307783 The trace of the matrix M(n) is A000290(n). %C A307783 The determinant of the matrix M(n) is A001792(n-1). %C A307783 The sum of the k-th row of the matrix M(n) is A008867(n,k). %C A307783 For n > k, the sum of the k-diagonal of the matrix M(n) is A055461(n,k). %H A307783 Vaclav Kotesovec, <a href="/A307783/b307783.txt">Table of n, a(n) for n = 1..35</a> %H A307783 Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A307783 For n = 1 the matrix M(1) is %e A307783 1 %e A307783 with permanent a(1) = 1. %e A307783 For n = 2 the matrix M(2) is %e A307783 2, 1 %e A307783 1, 2 %e A307783 with permanent a(2) = 5. %e A307783 For n = 3 the matrix M(3) is %e A307783 3, 2, 1 %e A307783 2, 3, 2 %e A307783 1, 2, 3 %e A307783 with permanent a(3) = 62. %p A307783 f:= proc(n) uses LinearAlgebra; Permanent(ToeplitzMatrix([i, i=n..1, -1)])) end proc: map(f, [$1..17]); %t A307783 b[i_]:=i; a[n_]:=Permanent[ToeplitzMatrix[Reverse[Array[b, n]], Reverse[Array[b, n ]]]]; Array[a, 17] %o A307783 (PARI) {a(n) = matpermanent(matrix(n, n, i, j, n + 1 - max(i - j + 1, j - i + 1)))} %o A307783 for(n=1, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Apr 29 2019 %Y A307783 Cf. A000290, A001792, A008867, A055461, A204235. %K A307783 nonn %O A307783 1,2 %A A307783 _Stefano Spezia_, Apr 28 2019